
Accepted for the International Workshop on Data Engineering for Wireless and Mobile Access, Seattle, 20 August 1999

Recovery Guarantees in Mobile Systems

Cris Pedregal Martin and Krithi Ramamritham
Computer Science Department

University of Massachusetts
Amherst, Mass. 01003–4610

cris, krithi@cs.umass.edu

Abstract

Mobile applications increasingly require transaction-like proper-
ties, particularly those of recovery. Because there is a lack of ab-
stractions to decompose the machinery of recovery, realizing re-
covery is difficult and error-prone, especially in a novel context like
mobile systems.

We introduce recovery guarantees to tackle this problem by char-
acterizing the assurances relevant to recovery that a subsystem must
give to another. They describe the what can be expected but not
the how it is implemented for recovery. Guarantees are comple-
mented by recovery protocols, which prescribe behaviors subsys-
tems should follow in order to take advantage of the guarantees.

In this paper we use the notions of recovery guarantees and pro-
tocols to show the relationships, vis-à-vis recovery, between the
components of a mobile system. Our analysis shows which compo-
nents of recovery remain unchanged (from a conventional recovery
design) and which respond to the particular needs of mobile sys-
tems. This sheds light not just on how to do recovery on mobile
systems but also on the nature of recovery in general.

1 Introduction

Recovery is important because it supports desirable transactional
functionality, which preserves the consistency of data in the face of
failures. The particular case of recovery in mobile systems is in-
teresting for several reasons. First, mobile systems are multi-node
distributed systems and, although they exhibit partial failures, their
services are expected to degrade gracefully, i.e., with a loss of func-
tionality proportional to the severity of the failure. Second, the mo-
bility of a host imposes restrictions (on bandwidth, power, and re-

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting

with credit is permitted. To copy otherwise, to republish, to post on servers

or to redistribute to lists, requires prior specific permission and/or a fee.

Copyright ACM 1999 MobiDE99 Seattle, Wash.

liability of storage) that affect key aspects of recovery support. A
mobile system’s reliable/stable storage may be limited, or nonexis-
tent, necessitating the mobile host’s frequent communication with
the base; however, the bandwidth of the link between a mobile and
its base is not only much smaller than that between computing and
storage (disk) subsystems, but also smaller than that between hosts
on a fixed (local or even wide-area) network. In other words, a
mobile host needs its fixed base host to support its recovery, but
communicating with it is slow and expensive. Also, when a mobile
host migrates it changes base hosts, thus the mobile relates (for its
recovery support) not with an individual fixed host but with the net-
work, which becomes burdened with abstracting the migration for
the purposes of recovery. Thus the problem of recovery in mobile
systems is challenging because of its distributed nature and because
resources are quite limited.

Our goals

Our research efforts are aimed at bringing the benefits of abstraction
and the methodologies abstraction enables to the characterization
and crafting of recovery functionality in a broad range of applica-
tions and infrastructure.

This paper is an exercise, as part of those efforts, to apply a novel
abstraction (recovery guarantees) to expose the relationships, vis-à-
vis recovery, between the components of a mobile system. Our goal
is to show how mobility affects the realization of recovery proper-
ties, and to demonstrate the usefulness of our approach to reason
about and craft recovery.

We believe that exposing the components of recovery and their
relationships will improve modeling and crafting of recovery. This
will improve the understanding of recovery, leading to an increase
of confidence in existing schemes (less obscurity) and making
tradeoffs more apparent, thus allowing more informed choices of
infrastructure and protocols. Also, it will make it easier to build
recovery with both traditional and novel database applications.

Organization of this paper

The rest of the paper is organized as follows. Section 2 reviews
recovery concepts and mentions previous work on what recovery is
and how it can be implemented. This leads to the introduction of
recovery guarantees and protocols, followed by with notation and

1

illustrated by two simple examples. Section 3 discusses a mobile
system and its recovery characteristics, introducing the necessary
notation. This is followed by a discussion how recovery informa-
tion must be propagated to support eager and lazy handoffs, and
how repair is done. Section 4 discusses related work and Section 5
offers conclusions and suggests further research.

2 Recovery Concepts

It is well understood that in general recovery is about carefully and
economically preserving information sufficient to bring a system
to a consistent state in the face of (system or transaction) failures.
This is a reflection of two facts. One, transformations of a system
from one consistent state to another are not atomic, hence failures
midway leave the system in an inconsistent state if not repaired.
Two, system state (partially) resides in, and thus its transformations
happen on, (volatile) storage whose contents are lost when failures
occur, necessitating the transcription of crucial state information to
persistent storage.

The transactional properties of Failure Atomicity (FA) and Dura-
bility are the high-level requirements that characterize recovery.
FA, also known as all-or-nothing, means that either all the opera-
tion by a transaction are installed (for a committed transaction) or
none is. Durability means that once a transaction has been declared
committed, its effects must persist on the system, in spite of fail-
ure. In order to maintain Failure Atomicity and Durability, a sys-
tem must ensure that there is always enough information available
so that even if a failure occurs, the system will be able to guarantee
the following two requirements:1

Uncommitted Undoable. The effects of operations by any
uncommited transaction on a subsystem can be undone, even after
a failure.

Committed Durable. The effects of operations by a commit-
ted transaction will persist on a subsystem, in spite of failures.

Notice that these conditions do not describe how the recovery
process works: they simply state invariants that normal processing
must observe for recovery to be possible in the event of a failure.
That is, these conditions describe what recovery is. The fundamen-
tals of recovery in these abstract terms are covered in the litera-
ture [1, 4]. Most literature describes how to implement recovery
[8, 2, 4] in very low-level terms, making it difficult to re-apply the
basic ideas to novel scenarios. In other words, recovery is either
discussed in general terms or in very detailed ones, with little work
in-between [5]. This paper is an attempt to reduce the gap between
the high-level requirements and their low-level implementations.

Recovery Guarantees and Protocols

We propose a more detailed but still generally applicable way of
talking about recovery by introducing the notion of guarantees and
protocols. Recovery is possible because different subsystems fail in
different manners: an understanding of those failures (or, in other

1Described as the redo and undo rules by Bernstein et al. [1].

terms, of the reliability a subsystem has to offer), coupled with dis-
ciplined communications between subsystems, yields an aggregate
system which is reliable as a whole in spite of the unreliability of
its parts. Specifically, we describe the expectation a subsystem has
on the reliability of another using the concept of guarantee.

In order to characterize the recovery properties of a system, we
need to: (i) identify the relevant subsystems and their relationships,
(ii) describe what each subsystem expects from others (the guaran-
tees), and (iii) specify how subsystems behave in order to create the
conditions for the guarantees to be useful (the protocols). Naturally,
we do this in the context of the requirements of recovery (e.g., FA
+ D or a variant) and the infrastructure of requirements (e.g., stable
logging facilities). We will not go into the details of (i): we assume
a subsystem is a whole host in a mobile system, but it will be ap-
parent that the ideas expressed here may be used to decompose a
subsystem into smaller subsystems to understand its realization of
recovery. For example, a fixed host may rely on some disk storage,
either local or across the network, to provide its guarantees. Figure
1 gives examples of the recovery concepts and their relationships.
In the sequel we concentrate on the guarantees and protocols.

Recovery guarantees describe the assurances relevant to recov-
ery that a subsystem (e.g., a fixed host in a mobile system) must
give to other subsystems (e.g., a mobile host). In general, recovery
guarantees formalize expectations of reliability between parts of a
system and have a broader applicability. Notice that, at a given level
of abstraction, a guarantee describes what a subsystem offers as a
recovery assurance, but not how it goes about doing it; in turn, how
the guarantee is supported may be described in terms of guarantees
offered by lower levels of the system. The notation
(where is a predictate and is an operation) means:

if holds,
then if invoked, will be performed successfully.

Thus, a recovery guarantee is a promise that once is true,
the guaranteed operation , if invoked, will succeed, in spite of any
intervening failures.

Often where an operation is performed will be part of the guaran-
tee specification. In general, the protocol is as follows: a (requester)
subsystem invokes an operation of (recovery, i.e., guarantor)
subsystem ; the success of (satisfies a predicate which) signifies
that guarantees to that a future invocation of will succeed.
Basically, with the information made available by (and perhaps
other information maintained by), will be in a position to ap-
ply , if requested. It should be noted, however, that the subsystem
on which is performed and the subsystem guaranteeing need not
be the same!

Also, note that we do not talk about the “commitment” or “dura-
bility” of . All that is stated above is that is executed at for

to guarantee that, when invoked, will be executed. How
ensures that this guarantee will hold (say, by making ’s results
durable, etc.) is of interest only when one wants to “verify” the
capabilities of subsystem .

Recovery protocols are prescriptions of how subsystems must
behave (i.e., issue their operations) in order to avail themselves of
the benefits given by the guarantees. For example, the protocol of

2

requirement guarantee protocol

examples Failure Atomicity
Durability

what they are system property, subsystem property, execution property,
seen by user and supported by supported by

applications recovery manager data manager
how implemented guarantees + protocols stable logging, recovery logging operations

Figure 1: Recovery concepts and their relationships.

logging undo information to disk before updating enables the data
manager subsystem to rely on the guarantee of the disk’s persis-
tence in case the update needs to be undone later.

For the purposes of this paper, we use protocols that satisfy cer-
tain precedence constraints. To this end, notation (,
operations) is used. It means:

if has been performed,
then must have happened before.

The rest of the notation follows.

Notation

We represent the behavior of the system with events in a partial
order –the history of the system. The subscript denotes in which
subsystem the operation that the event represents takes place. The
meanings of (guarantees) and (precedes) were defined in the
preceding paragraphs. Symbols and have the usual meanings
of identity and logical implication, respectively.

denote subsystems on which operations can be
issued and/or applied. Example subsystems: magnetic disk;
hosts in a network.

denotes a generic data operation which modifies the state
of the subsystem on which it is applied. Note that may be
invoked in a subsystem other than , and applied in . The
inverse of is written .

denotes the information necessary to reproduce the ef-
fects of operation (on subsystem). is a data item
and may be stored and transmitted; when subsystem pos-
sesses such data we write .
A way to obtain is to write a redo log record,
which we denote this write operation .

denotes the information necessary to undo the effects
of operation (on subsystem). is a data item and
may be stored and transmitted; when subsystem possesses
such data we write .
A way to obtain is to write an undo log record,
which we denote this write operation .
may be used to effect .

Example: Redo Log

Writing the redo log for on guarantees that it will be possible
to apply on (in spite of failures):

G1 :

The ability to offer the guarantee G1 requires that:

have means to store the log record for that will survive
failures. The guarantee acts as a requirement of persistence on

. (may be a disk subsystem, or a network connected node
whose failure mode is independent of ’s.)

The recovery system be able to use the log record as to
reproduce the effects of if necessary.

Guarantee G1 is useful to ensure that it is always possible to
effect operations issued by a committed transaction. To use the
guarantee for that purpose, the system must follow protocol P1:

P1 :

This protocol requires that the redo log is written or the operation
has been applied before the transaction commits (where trans-

action issued operation).2 Here the event denotes
the commit of transaction .

Example: Undo Log

Writing the undo log on subsystem for operation guarantees
it will be possible to erase the effects of on . This is done by
applying ’s inverse operation , and is written:

G2 :

Notice that we omit details about the meaning of ’s inverse
in guarantee G2. Informally, we must require that the occurrence of

must restore the subsystem to the state it would be in had
never occurred. This is spelled out in the ACTA formalism [3], but
we do not consider it further in this paper.

We now specify the protocol that ensures that guarantee G2 will
be applicable should a transaction need to be undone.

Protocol P2, also known as Write-ahead logging (WAL), requires
that an undo log record for an operation be stored before the opera-
tion is applied:

2In the presence of delegation (see [3]), is the transaction re-
sponsible for operation .

3

network
fixed

WRL (P)
MB

1 1 2

3

MPMP

P
M

A B

M

Figure 2: Host sends operation to mobile host via ; logs it before sending it on to . (See History H1.)

P2 :

WAL (P2) preserves the ability to undo the operation; notice that
and may be the same subsystem.

These guarantees are supported by the recovery system, as fol-
lows: during normal (prevention) processing, the recovery system
ensures that logs are made persistent and thus safe from failures;
after a failure, during repair processing, the recovery systems ac-
cesses the logs and uses them to apply the undo as necessary.

3 Mobile System

We consider a mobile system described by Pradhan et al. [9], which
consists of a set of fixed base hosts and mobile hosts. Each base
covers a cell, which is an area in which there may be zero or more
mobile hosts. A mobile host may move from one cell to another, but
at any given time it communicates with at most one base host. For
our purposes it is sufficient to consider a single mobile host, which
we denote with in the sequel, because we assume that mobile
hosts do not interact directly for the purposes of recovery.

Distributed applications require exchange of messages between
(local and mobile) hosts and user inputs at the mobile hosts. Those
are the operations that change the state of a host. A message sent
to a mobile host is first sent to the base host which covers the
cell that is in; then forwards the message to .

For recovery, the system uses stable storage on fixed hosts, be-
cause disk storage at a mobile host is frequently disconnected and
deemed vulnerable to catastrophic failures.

In this paper we adopt the logging approach proposed in [9]:
before a message is transmitted to a mobile host , its base station
host logs it. Even inputs at are sent to and effected at
only after ’s acknowledgment.

Before we introduce the protocols and guarantees specific to the
mobile system, we illustrate the behavior of the system via a sample
history, H1 (see also Figure 2):

H1 :

This says that (a transaction on) system issues an operation
, which is sent to ’s base host (denoted). Then logs

before sending it on to , where it is received and applied.

Mobile System Notation

The following augments the notation of Section 2 for the mobile
system case. Here the subsystems of interest are the hosts (fixed
and mobile); we also introduce notation to describe the notions of
base, handoff, and the connectivity between hosts.

denote hosts (subsystems); denotes a mobile
host. Predicate is true if and only if host is mobile.

denotes that and are connected, i.e., that
they can exchange messages with each other.

means is within the cell controlled by host
(the base). Base hosts are always fixed.

denotes that host sends a message to host
containing operation , to be applied on host . We write

when a local transaction invokes operation
on .

denotes that host receives a message containing
operation , which must be applied on host .

4

denotes that a user at locally invokes operation
to be executed on .

denotes that host hands off mobile host
to host , or in other words that leaves ’s cell and enters

’s cell.3

Mobile System Properties

The following properties characterize the mobile system under
study. Direct communication is always possible for any pair of
fixed hosts. A mobile host can only communicate with its base host.
Specifically:

A fixed host is connected with all other fixed hosts:

A mobile host is directly connected to its base host (if it is
connected at all):

and is
unique

Each receive always has its corresponding send:

We omit notation for the transitive closure of but it is obvi-
ous that when a mobile host is in a cell it can communicate with
any fixed host via its base.

Protocols and Guarantees

Let us now consider the protocols and guarantees of the mobile
system described above. For brevity, we write only the redo version
of the protocols and guarantees; the undo ones are symmetric. The
first protocol specifies the origin of operations (P3). The other two
(P4 and P5) prescribe the log-before-apply strategy.

An operation always originates from either a local input or an
invocation (local when , or from another host) by a transac-
tion:

P3 :

When a base host receives an operation addressed to a mobile
host within its cell, it logs it before forwarding it:

P4 :

Before an operation may be applied at the mobile host , it must
be logged at ’s base:

P5 :

We now consider the guarantees aspect of the system. Before
an operation is applied at it must be logged at , which
guarantees that the operation will be reproducible later if necessary.
The guarantee is:

3It is possible for to leave and be outside any other cell;
we ignore that case.

G3 :

Recall that one of the properties of the mobile system is
, thus the second clause of the

guarantee’s antecedent always holds.
Guarantee G3 with protocols P4 and P5 capture the notion that

the base station is expected to keep recovery information for the
mobile host. Guarantee G3 is an instance of the more general redo
guarantee G4, which states that if the information to effect opera-
tion on host is available at host , and and can communi-
cate, then is guaranteed:

G4 :

3.1 Handoffs

The preceding does not take into account the effect on recovery of
a mobile host’s migration through the network. Migration is repre-
sented by a handoff, which happens when a mobile host leaves
a cell with base and enters a new cell whose base is . We re-
quire that recovery-related information for initially available on

must still be available should recovery be necessary while is
in ’s cell.

We first discuss the handoff at an abstract level. ’s migration
from to causes ’s guarantees to to be honored by be-
cause of (i) the guarantees gave , and (ii) a guarantee between
all fixed hosts on the network (given by their connectivity), in par-
ticular between and . Thus the guarantees necessary to are
inferred from the guarantees between and and the connectiv-
ity guarantee between any two fixed hosts (and). For brevity
we write only the redo cases; the undo are similar.

Guarantees between fixed hosts

The system guarantees between fixed hosts in the network say that
if one of them has redo (or undo) recovery information for an oper-
ation, the other can obtain it too:

G5 :

These guarantees are supported by the architecture of the fixed
host network; the connectivity, and some network management
software, ensure that station can obtain the recovery information
from station . The specification of when (or if) that information is
transferred is done via protocols that prescribe what must be done
at a handoff, and for which we specialize the guarantee G5 by re-
placing the antecedent with an implementation of how to record
and convey recovery information. In the sequel we deal with redo
guarantees; undo guarantees are similar.

Eager and Lazy Handoffs

To make the recovery information available to a mobile host, the
approaches are eager (pessimistic in [9]), in which the information
follows on the fixed network (i.e., as moves from to , its
recovery information is forwarded from to); and lazy, in which

5

information is only fetched from the original host if and when nec-
essary (i.e., the information remains at , and just keeps track of
that fact).

For the eager approach, protocol P6 simply ensures that when
a mobile host arrives in a new cell, the previous base station has
transmitted the recovery information to the current cell as part of
the handoff:

P6 :

Because protocol P6 ensures that the information is sent at the
time of handoff, the antecedent of G5 () holds. When
recovery information resides on (because was invoked while

was in ’s cell), as transmitting the recovery information to
is always possible (see Mobile System Properties), this means that
the recovery information is always available at the current base host
for .

Implementing the lazy approach only requires that there exist a
linked list of the base stations visited by the mobile host in which
there is extant recovery information relevant to the host. One way
to ensure that is logging the handoff events, so that recovery can
later find the appropriate information.

P7 :

For completeness, notice that when the recovery information was
generated in the same cell where the mobile host is, satisfying the
guarantee G5 is trivial, because we have the consequent already.

The preceding discussion of eager and lazy handoffs is interest-
ing on several accounts. First, it shows how the same guarantee
can be combined with two different protocols depending on the
desired policy. Guarantee G5 describes a property of the archi-
tecture of the system, namely that the connectivity between fixed
hosts facilitates propagating recovery information between them.
Protocol P6 describes how to use the guarantee –propagate recov-
ery information– eagerly; P7, how to do it lazily. Thus guarantees
and protocols decompose recovery. An intuitive view of these char-
acterizations is that protocols prescribe correct normal processing
behavior for transactions (e.g., log before installing), whereas guar-
antees prescribe correct behavior for the underlying infrastructure,
which must hold even through failures (e.g., fixed hosts are always
connected).

Second, handoffs present a simple example of composition of
guarantees. The recovery guarantee originally obtained by the mo-
bile host in the first cell which logged its operations is revalidated
as the mobile host moves. The new guarantee is derived as a com-
position of the original guarantee (between and in the terms
of the preceding discussion) and the guarantee extant between fixed
nodes in the network.

Third, the contrast between eager and lazy handoffs makes it
clear that guarantees and protocols strive to maintain the recovery
requirements necessary to make recovery possible. What guarantee
G5 and protocols P6 or P7 ensure is that, after a crash, the recovery
system will find sufficient information to enable it to repair the state
of . They do not ensure that the state of will be correct after

a failure – that is the responsibility of the repair phase, which we
consider in subsection 3.2. Thus it becomes apparent that the repair
phase of recovery, while it relies on the invariants induced by the
protocols and guarantees of the normal processing phase, admits of
separate treatment in terms of its own protocols and guarantees. We
focus on crash and repair next.

3.2 Crash and Repair

The repair phase of recovery uses log information (possibly resi-
dent on various places) to reconstruct the state of the mobile host.
The high-level property at work here is that the information nec-
essary for undo or redo (as necessary) is durably stored in one of
the hosts. In this subsection we briefly outline the protocols of the
repair phase. One set of protocols delimits the repair actions, by
prescribing which events must happen between the occurrence of a
crash event and the completion of repair work. The other set of pro-
tocols describes the repair work itself, for example indicating that
the effects of a ‘loser’ operation (e.g. one belonging to a transaction
uncommitted before the crash) must be undone.4

The repair phase begins after a crash event. Thus we need to
establish a protocol requirement that if a crash happened recovery
must happen too. A committed operation (on) must be installed5

in and somewhere in the fixed network, because we do not trust
’s storage to be durable. Thus repairing the database will mean

making the operation available on (so ’s state reflects a com-
mitted state) as well as somewhere else durable –a host on the fixed
network, but not necessarily , as that’s a policy choice.
Thus we specify that for each operation issued before the crash,
repair must verify that is committed but uninstalled, find the redo
information for ; move the redo info for to ; and using the
guarantee that redo-info can be used to redo , install .

The repair phase ends when the state of the whole database has
been restored to the committed projection of the history up to the
crash. This may not be a single event; instead it is characterized on
a per-object and per-operation basis.

Certain type of operations –repair work– can only happen while
the database is being repaired; i.e., the events cannot appear at other
times in the history of the system.

Also, the order in which operations are applied during repair
work is important, both to recreate the state correctly and to im-
prove the performance of recovery. Lomet and Tuttle [6, 7] identify
the minimal order that the correct redo installation of operations
during the repair work must follow to preserve correctness. The
method we outline here for the formalization of the repair phase
uses of the log information to ascertain the original order of the op-

4Besides indicating what are correct repair histories, the proto-
cols yield important properties that are otherwise stated ad-hoc: for
example, the property that the system will not unilaterally undo an
operation is a consequence of the fact that this particular action in
permitted only during repair.

5Installing an operation means making its effects permanent on
the (stable) database.

6

erations, enabling the repair algorithms to abide by the restrictions
identified by their work.

4 Related Work

Few researchers have dealt with the formalization of aspects of re-
covery. For example, [5] uses I/O automata to formally describe a
recovery system based on ARIES; however, his description is at a
low level of abstraction, close to the implementation.

Focusing on the redo portion of recovery, Lomet and Tuttle
[6, 7] derive and prove the correctness of a redo recovery algo-
rithm based on an installation graph that imposes an ordering sig-
nificantly weaker than the usual concurrency control conflict graph.
From this characterization they develop algorithms to manage the
volatile storage, a test to choose which operations from the log must
be redone, and an idempotent recovery algorithm that uses this test.
In particular, they identify the weakest order required in the instal-
lation of operations during the repair phase of recovery. This is
very useful in specifying correctness of recovery at the low-level
of recovery, as well as leading to improved cache management.
Our work complements theirs, because we describe higher-level
properties (via guarantees and protocols) of the recovery subsystem
whereas Lomet and Tuttle’s prescribe how to preserve correctness
at the level of installing updates.

5 Conclusions

In some sense, protocols and guarantees are very closely tied to
each other. Whereas protocols talk about what must be done to
achieve correct behavior, a guarantee states what can be expected if
certain events occur or operations are performed correctly.

In this paper, we have shown that the abstractions of recovery
guarantees can be very helpful in exposing the connections and
expectations that exist between different components of a mobile
system involved in a transactional activity. Similarly, recovery pro-
tocols make behavior requirements explicit.

By describing the mobile system and its behavior in terms of
guarantees and protocols, we obtained the following benefits. First,
we used abstraction to separate what a component can expect from
another; e.g., the mobile host’s (recovery) expectations of the fixed
hosts. Also, the flip side of this abstract view serves to show what
the system and each component must provide to others. Moreover,
this documents precisely the challenges of providing recovery un-
der mobility. For example, in showing handoff handling in terms
of protocols and guarantees, we exposed assumptions that were im-
plicit in the discussion of recovery [9]. We showed how the guaran-
tees of mutual communication across the fixed network, composed
with the original recovery guarantee for an operation, enable the re-
covery of operations once the mobile host has moved to a different
cell.

Second, in our describing the alternatives for handoffs we used
abstraction to characterize the broad requirement (a more abstract
guarantee) all approaches must satisfy, and then precisely showed

how that requirement is satisfied by the eager and the lazy approach.
In further work we will use this approach of refining guarantees to
precisely specify the recovery machinery, which in this paper we
described informally.

We believe that because the abstractions of guarantees and pro-
tocols help in understanding what a component is expected to do,
they will enable using a divide and conquer approach to crafting
recovery protocols and subsystems. To this end, we are planning
to examine the crafting of recovery for other transaction processing
platforms and for workflow systems.

References

[1] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency
Control and Recovery in Database Systems. Addison-Wesley,
Reading, Mass., 1987.

[2] Luis-Felipe Cabrera, John A. McPherson, Peter M. Schwarz,
and James C. Wyllie. Implementing Atomicity in Two Sys-
tems: Techniques, Tradeoffs and Experience. IEEE Trans. on
Software Engineering, 19(10):950–961, October 1993.

[3] Panos K. Chrysantis and Krithi Ramamritham. Synthesis of
extended transaction models using ACTA. ACM Trans. on
Database Systems, 10(3):450–491, September 1994.

[4] Jim Gray and Andreas Reuter. Transaction Processing: Con-
cepts and Techniques. Morgan Kaufmann, San Mateo, Calif.,
1993.

[5] Dean Kuo. Model and Verification of a Data Manager Based
on ARIES. ACM Trans. on Database Systems, 21(4):427–479,
December 1997.

[6] David Lomet and Mark R. Tuttle. Redo recovery after system
crashes. In Proc. of the 21st Int’l Conf. on Very Large Data
Bases, pages 457–468, Zürich, September 1995.

[7] David Lomet and Mark R. Tuttle. Logical logging to extend
recovery to new domains. In Proc. of the 1999 ACM SIGMOD,
pages 73–84, Philadelphia, Penn., June 1999.

[8] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and
Peter Schwarz. ARIES: A Transaction Recovery Method Sup-
porting Fine-Granularity Locking and Partial Rollbacks using
Write-Ahead Logging. ACM Trans. on Database Systems,
17(1):94–162, March 1992.

[9] Dhiraj K. Pradhan, P. Krishna, and Nitin H. Vaidya. Recov-
erable mobile environments: Design and trade-off analysis.
Technical Report 95-053, Department of Computer Science,
Texas A & M University, College Station, Texas, 1995.

7

