1 TOWARD FORMALIZING
RECOVERY OF (ADVANCED)
TRANSACTIONS

Cris Pedregal Martin

and Krithi Ramamritham

Current literature on database transaction recovery reveals a semantic gap be-
tween high-level requirements (such as the all-or-nothing property) and the low-
level descriptions of how these requirements are implemented (in terms of buffers
and their policies, volatile and persistent storage, shadows, etc.). At the same
time, fast growing demands for recovery in both traditional and advanced trans-
action models require an increased understanding of the relationships between
requirements and mechanisms, and the ability to craft recovery more flezibly and
modularly. In this chapter we address these challenges, introducing a framework
to unify the different components of recovery as well as providing the concepts
and notation needd to reason about recovery protocols. We apply our framework
to formalize the properties of ARIES, a production-quality recovery protocol, and
show how it can accommodate ARIES/RH, a variant of ARIES that supports
delegation.

4 RECOVERY

1.1 INTRODUCTION

Recovery support in database transaction processing systems (TP) is provided
to ensure consistency and correctness under logical as well as physical failures.
Even when we confine ourselves to the Failure Atomicity (FA, the all or noth-
ing) property of transactions, several considerations determine how recovery is
achieved. For instance, different versions of ARIES [MHL*92], and especially
the case study reported in [CMSW93] demonstrate the need for different poli-
cies and hence different recovery protocols and mechanisms — depending on the
size of the objects, frequency of access, and the system architecture, among
other considerations. Furthermore, when failure atomicity is to be achieved in
parallel and distributed platforms, traditional recovery approaches do not per-
form well since they lead to unnecessary transaction aborts [MR95]. Finally,
the growing importance of advanced applications and nontraditional transac-
tion models as well as relaxed correctness criteria places new semantics and
performance demands on recovery.

These important challenges show the need for new approaches to recovery;
in particular, it is necessary to develop systematic methods to craft recovery
both for the traditional FA correctness criterion, and for advanced transac-
tion models and applications, which demand even more flexibility from the
recovery subsystem. In the current state of the art in recovery, however, good
design and implementation is hampered by the gap between the abstract de-
scription of the desired (high-level) recovery properties, and the very detailed
implementation-oriented knowledge of how to build systems that support those
properties. Specifically, there is a wide semantic gap between high-level re-
quirements (such as the all-or-nothing property) and the low-level descriptions
of how these requirements are implemented (in terms of buffers and their poli-
cies, volatile and persistent storage, shadows, etc.).

To address these problems, we introduce a framework to unify the different
components of recovery as well as provide the concepts and notation needed to
reason about recovery protocols.

The framework conceptualizes recovery in the context of transaction pro-
cessing systems by identifying the essential ingredients of recovery and precisely
prescribing their relationships thus stating various recovery properties of such
systems.

By formalizing recovery properties at each abstraction level, we allow the
description of abstract properties (such as the Failure Atomicity requirement)
without reference to a particular implementation, and of concrete mechanisms
without reference to the abstract properties they support. This separation of
the what from the how allows the use of abstraction both to understand and

TOWARD FORMALIZING RECOVERY OF (ADVANCED) TRANSACTIONS 5

explain recovery schemes, and to precisely state and prove the properties with
which they must comply.

In this chapter we apply our framework to ARIES, a production-quality,
practical recovery protocol which supports traditional failure atomicity. We
also broaden the scope by applying it to ARIES/RH, a variant of ARIES that
supports delegation. Delegation [CR94] allows a transaction to transfer respon-
sibility over one or more of its operations to another transaction. This broadens
the visibility of the delegatee, and allows control over the recovery properties
of the transaction model. Thus, delegation adds substantial semantic power
to a conventional Transaction Management System. Examples of Advanced
Transaction Models that can be synthesized using delegate are Joint Transac-
tions, Nested Transactions, Split Transactions, and Open Nested Transactions
[CR94]. See section 1.3.3 for more details on delegation.

The remainder of this chapter is organized as follows. In section 1.2 first
we introduce the formal framework, presenting the ingredients of recovery and
their properties in terms of histories. Then we state our assumptions and the
necessary formal definitions.

In section 1.3 we use the elements of section 1.2 to formally specify vari-
ous recovery properties. We begin with the requirements for Failure Atomicity
and Durability, which abstractly describe what one expects to hold in a sys-
tem that offers recovery; we also extend these requirements to take Delegation
into account. Then we formalize the assurances, which make explicit certain
usual assumptions about the semantics of the basic mechanisms; for example,
no aborted operation will be later committed by the recovery mechanisms. Fi-
nally we specify the recovery mechanisms, the lowest level of the abstraction
hierarchy. The mechanisms describe what recovery is built on; for example, the
semantics of the persistent log.

In section 1.4 we examine a concrete recovery protocol, ARIES, and show the
application of our framework to make its properties precise; we also formalize
ARIES/RH, the variant of ARIES that supports delegation through rewriting
of history. Finally, in section 1.5 we discuss the work involved in relaxing some
of the assumptions of this chapter, and conclude with a summary.

1.2 THE FORMAL MODEL

We want to describe recovery in transaction processing systems in terms of its
properties at different levels of abstraction. Recovery properties are statements
that characterize the expected behavior of the system as a whole or some of
its components. For example, at the topmost abstraction level, a recovery
property of interest is Failure Atomicity, which we express as conditions on
the occurrence of commits and aborts in an abstract history. At lower levels

6 RECOVERY

we express more specialized recovery properties in terms of more specialized
entities, such as the persistent portion of the log. In this section we present
our framework in terms of the various recovery properties, grouped by level
of abstraction, and their relationships, both within a level, and across levels
(when certain properties “ensure” or “restrict” others).

Our framework consists of recovery ingredients grouped in four levels of ab-
straction; for clarity, we use different names for the recovery properties at each
level. We state the properties as predicates over histories and their projections;
we introduce histories in the next section. Here we only give an overview (see
Figure 1.1); in subsequent sections we define them precisely. At the top level
we have the recovery requirements, such as Failure Atomicity and Durability.
Requirements are the properties that applications and users expect from a sys-
tem that correctly supports recovery. Below the requirements lie three groups
of rules:

CT/AB: rules to commit/abort transactions and operations,

1

XOPs: rules to execute operations,” and

XREC: rules to effect recovery.

Failure atomicity is primarily the concern of cT/AB; durability is primarily
the concern of XREC. Thus the specifications of the abort and commit proto-
cols are needed to demonstrate failure atomicity while the specifications of the
recovery protocol are needed to demonstrate durability.

These three rule groups correspond to an intuitive breakdown into compo-
nents, but we must also account for the interaction between rules, which we do
with an intermediate level of properties which we term assurances. Specifically,
ensuring failure atomicity imposes certain restrictions on XOPs and XREC to
assure that they will also work toward achieving failure atomicity, while dura-
bility requires certain assurances on CT/AB and XOPS so that they will also
work toward achieving durability. That these assurances hold must be demon-
strated given the specifications of the corresponding rules; assuming the rules
and the assurances one proves that the requirements are met.

The ingredients comprising the next level are specific protocols and policies
(see Figure 1.1). They embody the semantics of basic mechanisms, such as the
log, and algorithms for recovery. In this chapter we concentrate on the inte-
gration of a specific recovery protocol (ARIES, and its variant with delegation)
and we do not explore all the

Specifically, we want to show that a given protocol meets certain require-
ments. This can be done through a process of refinement. For instance, given
that recovery protocols operate in phases, we specify the properties of each
phase. We then show that these protocol properties satisfy the rules and along

TOWARD FORMALIZING RECOVERY OF (ADVANCED) TRANSACTIONS 7

Failure Atomicity

31 >< 32

Assurances for
ailure Atomicity,

34 35
Recovery Operation Commit/Abort
Rules Rules Rules
3.6 w
/ \ / \ 37

Recovery TP Logging Commit/Abort

Assurances for
Durability

Protocol & Mec. Policies Protocol Protocol

Figure 1.1 Recovery Ingredients

with the assurances given by cT/AB and XOPs satisfy the requirements associ-
ated with the crash recovery protocol. The details of each phase (say, specified
via pseudo-code) can then be used to demonstrate that the properties associ-
ated with each phase in fact hold.

The salient aspects of our framework include:

m It enables the formal specification of the correctness of transaction exe-
cutions during normal run-time as well as during recovery after a crash.

m It provides a systematic delineation of the different components of recov-
ery.

m [t allows the formalization of the behavior of recovery — through a process
of refinement involving multiple levels of abstraction. This leads to a
demonstration of correctness.

8 RECOVERY

1.2.1 Modeling Recovery through Histories

Our goal is to frame recovery in terms of how different views of the events — the
histories — in a transaction system are related to each other. Informally, one can
visualize a transaction system history as an execution trace — a chronological
sequence — of transaction operations on data objects, such as updates, and
transaction management events, such as commit. (We define precisely histories
and their different events in the next section.)

H
|
L
]
SD,, "' SDy, sL

Figure 1.2 Histories in a Database Transaction System

We model recovery in a transaction processing system by examining the
properties of its different histories; each history applies to different entities in
a transaction processing system. These histories are arranged in a hierarchy
and are related to each other by projections, and it is the properties of these
projections that describe the particulars of a recovery scheme (see Figure 1.2).
The histories are as follows:

m The history H records all the events that occur in the system — including
crashes. Clearly, this is an abstraction.

m £ denotes the history known to the system, one that is lost in the event
of a crash. £ is a projection of #; it contains the suffix of # starting from
the most recent crash event. (£ can be visualized as the system log.)

m SL denotes the history known to the system in spite of crashes. This is a
projection of £. (SL can be visualized as the portion of the log that has
been moved to stable storage).

TOWARD FORMALIZING RECOVERY OF (ADVANCED) TRANSACTIONS 9

m Dy is a projection of £ containing just the operations on ob. It denotes
the state of ob known to the system. (Dop can be visualized as the volatile
state of ob).

m SD, is the state of ob that survives crashes. It is a projection of Dp; it
contains the prefix of Dop. (SDop can be visualized as the stabilized state
of ob).

Assumptions. For ease of explanation, we focus first on database systems:
1. that use atomic transactions,

2. that perform in-place updates and logging for recovery, and whose oper-
ations are atomic, and

3. that use serializability as the correctness criterion for concurrent trans-
action executions.

Then, in section 1.3.3 we relax the restrictions (1) and (3) by showing how to
add the delegation primitive to the framework. Delegation allows the synthesis
of advanced transaction models, whose correctness criteria relax and extend
conventional serializability and Failure Atomicity.

In this hierarchy of histories we ignore the presence of checkpoints. In Section
1.5, we discuss the extensions to the formal model that can deal with further
relaxations of these restrictions.

1.2.2 Events, Histories, States

Consider a database as a set of data objects each of which has a state that can
be modified by operations executed on behalf of transactions. These objects
may be stored in persistent storage (e.g., magnetic disk) or in volatile storage;
we generally assume that all objects exist in persistent storage (some possibly
in an outdated version), but some may be “cached” in faster volatile memory.
Usually the system only manipulates objects in volatile memory, and this is
what raises the recovery issues.

DEFINITION 1.2.1 Object and Transaction Events

Invocation of an operation on an object is termed an object event. The
type of an object defines the object events that pertain to it. We use p;[ob]
to denote the object event corresponding to the invocation of the operation
p on object ob by transaction ¢t. We write p; when o0b is clear from context
or irrelevant. (For simplicity of exposition we assume that a transaction
does not invoke multiple instances of p:[ob].)

10

RECOVERY

Commit(t) and abort(t) denote the commit and abort of transaction ¢,
respectively. Commit[p;[ob]] and abort[p;[ob]] denote the commit and abort
of operation p performed by transaction ¢ on object ob, respectively. These
are all transaction (management) events. When a transaction event is not
issued by a transaction, we add a superscript; e.g., R when an operation is
issued by the recovery system.

DEFINITION 1.2.2 Crash, Recovery, and Recovery-interval

A crash event denotes the occurrence of a system failure; a rec event
denotes that the system has recovered from a failure. All events are totally
ordered with respect to both crash and rec events. Different crashes and
recoveries in a history are indicated by a subscript, as in recg. Notice that
during each (say, the k'*) recovery phase there may be multiple crashes,
that we indicate with a superscript. Thus crashj is the first crash, and
before recy there may be several crashes crash?, ..., crashy.

We define the k* recovery-interval to be the part of the history (see
below) bounded by crash} and reck. To reduce clutter we usually write
crashy, for cra,shi when it is clear from context.

Remark: We assume throughout this chapter that recovery is completed
before any normal processing is allowed to restart (but see Section 1.5).
This is reflected in this formalism by the existence of a single system-wide
recovery event rec that represents the completion of a particular recovery
phase. To model recovery concurrent with normal processing it suffices to
introduce a set of per-object recovery events, each of which represents that
its corresponding object has been successfully recovered.

DEeFINITION 1.2.3 Histories

A history H [BHG87, CR94] is a partially ordered set of events invoked
by transactions. Thus, object events and transaction management events
are both part of the history #. We write € € A to indicate that the event
€ occurs in the history H. Notation —4 denotes precedence ordering in
the history # (we usually omit the subscript #) and = denotes logical
implication.

We write a —;7 3, where events a,¢,8 € H, to indicate that event ¢
does not appear between a and 8 (other events may appear). Formally:
a=y B © a—=uf AVe((a—onue—=uf)=>eFe).

DEFINITION 1.2.4 Projections and States

A projection HP of a history H by predicate Pis a history that contains
all events in # that satisfy predicate P, preserving the order. For example,
the projection of the events invoked by a transaction ¢ is a partial order
denoting the temporal order in which the related events occur in the history.

TOWARD FORMALIZING RECOVERY OF (ADVANCED) TRANSACTIONS 11

We abuse notation and write £~ to denote the projection that removes
all events in set E. For example, we are often interested in “projecting
out” all uncommitted operations.

H¢, is the projection of history H until (totally ordered) event e (it
includes €). H¢~ is H¢ excluding event e.?

Let #(°) denote the projection of H with respect to the operations on a
single object 0b.2 Thus, a state s of an object is the state produced by ap-
plying the history 2£(°®) to the object’s initial state so (s = state(so, H(°®))).
For brevity, we will use #(°®) to denote the state of an object produced by
#(°) | implicitly assuming initial state so.

DEFINITION 1.2.5 Uncommitted and Aborted Transaction Sets

We denote by Uty the set of uncommitted transactions in history H:
t € Uty < commit(t) ¢ H. The set of aborted transactions Aty in history
H: t € Aty & abort(t) € H. Similarly we define the set of pending (un-
committed and unaborted) transaction operations Ppy, the set of aborted
operations Apy and the set of recovery operations Rpy. We drop the sub-
script, ¢, when it is clear from context.

DEFINITION 1.2.6 Physical and Logical States

The physical state of an object ob after history H is the state of ob after
74(%%) is applied to the initial state of ob. The physical database state after
H is the physical state of all the objects in the database after # is applied.
This is denoted by Hp.

Consider the history #~FPU4P that results from removing from a history
all object operations performed by the recovery system and all aborted
operations. The logical database state, denoted by Hp, is the physical state
that results* from #~FPUAP,

DEFINITION 1.2.7 Equivalence of Histories

Two histories ', H" are equivalent when the (logical or physical) state
of the database after the execution of #' is the same as the state after the
execution of ' on the same initial state. Different equivalence relations
result when the logical (L) or physical (P) state of the database are con-
sidered for each of H' and H". We define three: Hp =HY Hp = HY

L =HT.

Two histories H',H'" are operation commit equivalent when they are
equivalent and all operations committed in one are committed in the other
and vice-versa. We denote them ', =° HY Hp =° HY H} =° #HY.

12 RECOVERY

1.3 REQUIREMENTS, ASSURANCES & RULES

In transaction processing systems that adopt the traditional transaction model,
transactions must be failure atomic, i.e., satisfy the all or nothing property.
Failure atomicity requires that (a) if a transaction commits, the changes done
by all its operations are committed® and (b) if a transaction aborts unilaterally
(logical failure) or there is a system failure before a transaction commits, then
none of its changes remain in the system. Durability requires that changes
made by a transaction remain persistent even if failures occur after the commit
of the transaction.

Thus, the goals of recovery are to ensure that enough information about the
changes made by a transaction is stored in persistent memory to enable the
reconstruction of the changes made by a committed transaction in the case of
a system failure. It should also enable the rolling back of the changes made
by an aborted transaction by keeping appropriate information around. These
two goals must be accomplished while interfering as little as possible with the
normal (“forward”) operation of the system.

In this section we use the formalism of section 1.2 to state the properties that
characterize recovery at different levels of abstraction, from abstract to concrete
(see Figure 1.1). We begin by specifying the requirements of Failure Atomicity
and Durability, and how they are affected by the introduction of Delegation.
We then discuss assurances that enable the construction of recovery, and the
associated restrictions they place on the recovery system. Finally, we discuss
specific recovery mechanisms. This sets the stage for the discussion of a specific
protocol (ARIES) in Section 1.4.

1.3.1 Durability

Durability requires that committed operations should persist in spite of crashes.

1. When recovery is complete (after the recovery-interval (crashy,reck)),
the logical state is equivalent to the state produced by committed oper-
ations just before crashy:

VR(HG M = o)

2. After recovery, the physical state of £ mirrors the logical state of H at
that point:

Vk(reck € H = Ll = W)

1.3.2 Failure Atomicity

Transaction t is failure atomic if the following two conditions hold:

TOWARD FORMALIZING RECOVERY OF (ADVANCED) TRANSACTIONS 13

All Operations invoked by a committed transaction are committed:

(commit(t) € H) = Vob Vp ((p:[ob] € H) = (commit[p:[ob]] € H)).

Nothing Operations invoked by an aborted transaction are aborted:

(abort(t) € H) = VYob Vp ((pt[ob] € H) = (abort[p:[ob]] € H)).

1.3.3 Failure Atomicity and Delegation

Delegation allows a transaction to transfer responsibility for an operation to
another transaction. After the delegation, the fate of the operation, i.e., its
visibility and conflicts with other operations, are dictated by the scope and
fate of the delegatee transaction. In this section we give just the essential
definitions.

Traditionally, the transaction invoking an operation is also responsible for
committing or aborting that operation. With delegation the invoker of the
operation and the transaction that commits (or aborts) the operation may
be different. Delegation is useful in synthesizing advanced transaction mod-
els because it broadens the visibility of the delegatee, and because it controls
the recovery properties of the transaction model. The broadening of visibil-
ity is useful in allowing a delegator to selectively make tentative and partial
results, as well as hints such as coordination information, accessible to other
transactions. The control of the recovery makes it possible to decouple the
fate of an operation from that of the transaction that made the operation; for
instance, a transaction may delegate some operations that will remain uncom-
mitted but alive after the delegator transaction aborted. Examples of Advanced
Transaction Models that can be synthesized using delegate are Joint Transac-
tions, Nested Transactions, Split Transactions, and Open Nested Transactions
[CR94]. For extensive treatments of delegation, see [CR94]; delegation in the
context of recovery is examined in [PR97].

DEFINITION 1.3.8 Invoking Transaction

A transaction ¢ that issues an operation p on object ob is called the
invoking transaction, and we denote it with a subscript: p;[ob]. We drop
the subscript when it is obvious or irrelevant.

DEFINITION 1.3.9 Responsible Transaction

A transaction ¢ responsible for an operation pis in charge of committing
or aborting p, unless it delegates it: Responsible Tr(p[ob]) = ¢ holds from
when t performs p[ob] or ¢ is delegated p[ob] until ¢ either terminates or
delegates p[ob].

Notice that without delegation, the transaction responsible for an oper-
ation is always the invoking transaction.

14 RECOVERY

DEFINITION 1.3.10 Delegation
We write delegate(t1,t2, pt,[ob]) to denote that ¢; delegates operation p
(originally invoked by tg) to transaction ¢;. For this delegation we have:
Precondition Responsible Tr(p[ob]) = t;.
Postcondition: Responsible Tr(p[ob]) = ts.

Adding Delegation. We now examine the consequences of adding the notion
of delegation to the basic framework. This is an important extension as the
semantics of delegation allows the synthesis of advanced transaction models
whose correctness criteria relax serializability in various ways. In the presence
of delegation, we say that transaction t is failure atomic if the following two
modified conditions hold:

AIll’ All operations a committed transaction is responsible for are committed:
(commit(t') € H) =
Vob Vp Vt ((p:[ob] € X A ResponsibleTr(p:[ob]) =t') =
(commit[p; [ob]] € H)),

Nothing’ All operations an aborted transaction is responsible for are aborted:
(abort(t') e H) =
Vob Vp Vt ((p:[ob] € X A ResponsibleTr(p:[ob]) =t') =
(abort[p:[ob]] € H)),

Changes with the addition of delegation. In the absence of delegation,
the transaction that issued an operation remains responsible for it. Therefore,
the abort/commit of one dictates the abort/commit of the other, respectively.
When a transaction ¢ delegates an operation p to another transaction ¢' it decou-
ples p’s fate from its own (in the sense of committing or aborting). This causes
some changes; however, most of the recovery properties remain unchanged,
because they are formulated in terms of operations, not transactions.

We now focus on the next level of specification, which is concerned with
assurances. These are properties that the various components must preserve
to allow the more abstract requirements to be satisfied. The components cor-
respond to well-understood mechanisms and protocols, properties of which are
rarely stated explicitly.

1.3.4 Assurances for Failure Atomicity

Here we describe the restrictions imposed on recovery mechanisms to provide
assurances for Failure Atomicity. They are described as restrictions as they
limit what can be done by the recovery mechanism to obtain the necessary as-
surances. Usually these restrictions are implicitly assumed by recovery schemes;

TOWARD FORMALIZING RECOVERY OF (ADVANCED) TRANSACTIONS 15

they reflect the broad notion that the recovery mechanism is “well-behaved,”
i.e., that it does not abort committed operations or vice-versa, and that it only
operates during the recovery phase.

1. No aborted operation should be committed by the recovery system:

VpVtVob(abort[p[ob]] € H = (commit®[p,[ob]] & H))

2. No committed operation should be aborted by the recovery system:

VpVtVob(commit|p;[0b]] € H = (abort®[p:[ob]] & H))

3. Outside of a recovery-interval, object, commit, and abort operations can-
not be invoked by the recovery system:

VtVpVob(e € {pft[ob], commit®[p,[ob]], abort®[p,[0b]]}) =
Vk(recy, —7¢ crash,lc+1)

We define recq to precede all events in # so that k& = 0 covers the interval
before the first crash.

4. If the recovery system aborts a transaction operation, then it will even-
tually abort the transaction:

VtVpVob(abort®[p,[ob]] € H = abortR[t] € H)

Delegation Assurances. The only restriction that needs reformulating is

(4)-

4.’ If the recovery system aborts an operation, then it will eventually abort
the operation’s responsible transaction:

Vp, ob, t(abort®[p;[ob]] € H => abort®[ResponsibleTr(p:[ob])] € H)

1.3.5 Assurances for Durability

Here we describe the assurances provided to the recovery component so that
it can achieve durability. The first assurance is central to the semantics of
having a reliable logging mechanism. The rest can be seen as “technical” (i.e.,
for the completeness of the formalism): the next three make explicit the usual
assumptions of “good behavior,” and the last one ensures the base case for
induction proofs (on the length of histories).

1. All operations between two consecutive crashes crash; and crash; (or be-
tween the initial state and crash;) which appear in H"2*"i~ also appear
in £°7***i~ and they appear in the same order.

16

RECOVERY

. No operations are invoked by other systems during the recovery period

(the recovery system may invoke operations to effect recovery). Formally:

VpVtVobVS(S # R A e € {p°®[ob], commit> [p,[ob]], abort®[p;[ob]]}) =
Vk, i(crashi —7¢ recy)

. No other part S of the transaction system commits an operation which

was previously aborted. Formally:

VSVpVitVob(S # R A abort[p[ob]] € H =
—(abort[pt[ob]] —# commitS [pi[0b]]))

. No other part of the system aborts an operation which was previously

committed.

VSVpViVob(S # R A commit[p:[ob]] € H =
—(commit|p;[0b]] =3 abort® [p:[0b]]))

S refers to different components of the transaction processing system.

. History and log are both empty at the beginning: #° = ¢ = £°.

1.3.6 Recovery Mechanisms Rules

Here we specify the mechanisms that support recovery in terms of rules. For
example, if an operation was uncommitted before a crash, it will not be com-
mitted by the recovery system.

1. After recovery, history £ reflects the effects of all committed operations,

all aborted operations, all transaction management operations and all
system operations (which includes undos of aborted operations). Those
operations invoked by transactions, which have neither been committed
nor aborted, are given by PpLC,M,,}._ which we denote Actops. None of

these operations is reflected.

Vk(ﬁ’;ck =c (L‘;"a“‘hll._)—Actaps)

. During recovery, an operation performed by a transaction which is neither

committed nor aborted before the crash is aborted by the recovery system.

VpViVobVk(p.[ob] € (Actops) =
(crashi — abort®[p,[ob]] =4 reck)))

. An operation invoked by a transaction committed before a crash is not

aborted by the recovery system.

ViVpVobVk(commit[p; [ob]] € Lerashi— —
—(crashy —3 abort®[p,[ob]] =4 reck))

TOWARD FORMALIZING RECOVERY OF (ADVANCED) TRANSACTIONS 17

4. If an operation invoked by a transaction was uncommitted before a crash,
it is not committed by the recovery system.

ViVpVobVk(commit[p;[ob]] ¢ L7k~ =
—(crashy —3 commit®p;[ob]] =4 reck))

5. The recovery system does not invoke any operations outside the recovery-
interval.

Vp, ob, t(e € {pft[0b], commit®[p,[ob]], abort®[p;[0b]]}) =
Vk(recy —7¢ crashg41)

6. If the recovery system aborts an operation invoked by a transaction in
a recovery interval, it also aborts the transaction before the end of that
recovery interval.

Vp, ob, t, k((crashy — abort®[p;[ob]] — recy) =
(crashy — abort®[t] — recy))

1.3.7 Logging and Commit/Abort Protocols

The commit/abort and logging protocols guarantee the following:

AB-UNDO The undo of an operation is equated with the abort of the

operation:
VpVobVt(p:[ob] € £ = (undo®(p:[od]) € L & abort®(p,[ob]) € L))

LOG-CT All the committed operations are in the stable log at the time of

a crash:
ViVp¥tVob(commit(p;[ob]) € Hhi~) = (py[ob] € SLeTashi)

1.4 A SPECIFIC RECOVERY PROTOCOL

In this section we indicate how to apply our framework to a specific recovery
protocol, ARIES, and how, when we extend ARIES with delegation (resulting
in ARIES/RH) our framework adapts and covers the new extensions. First,
we give an informal overview of ARIES and ARIES/RH. Second, we specify
the assurances that ARIES and ARIES/RH assume from other components of
recovery. Third, we specify the correctness properties satisfied by ARIES and
ARIES/RH. Then, we show that the second and the third together conform to
the rules that recovery protocols in general must satisfy. For brevity we present
just a sample of the proofs.

18 RECOVERY

LOG /\/

Checkpoint Failure

Analysis

Redo All
________ PASSES

Undo Losers

Figure 1.3 ARIES passes over the log

1.4.1 Overview of ARIES and ARIES/RH

We first review ARIES to establish context and terminology, and then we ex-
plain the modifications necessary for ARIES/RH [PR97]. The ARIES recovery
method follows the repeating history paradigm and consists of three phases®
(see figure 1.3). Immediately after a crash, ARIES invalidates the volatile
database. Analysis identifies which transactions must be rolled back (losers)
and which must be made persistent (winners). Redo repeats history, redoing
all transaction operations that had taken place up to the crash. Finally, using
the analysis information, undo removes the operations from loser transactions.

ARIES keeps, for each transaction, a Backward Chain (BC, see figure 1.4).
All the log records pertaining to one transaction form a linked list BC, acces-
sible through T'r_List, which points to the most recent one. ARIES inserts
compensation log records (CLRs) in the BC after undoing each log record’s
action.” Applying delegate(t;,t2,0b)® is tantamount to removing the subchain
of records of operations on ob from BC(¢1) and merging it with BC(¢2). Next
we discuss ARIES/RH, which supports delegation without modifying the log.
First we present the data structures, and we explain the normal processing.
We then examine recovery processing, first the forward (analysis & redo) pass
and then the backward (undo) pass.

/\/\/\/\

100 BC(t1)
update |update |update update update update delegate
tl a t2 X t2 a tl tl a t2 t1%
BC(t2
~__ N \/ v \/()
time
_—=

Figure 1.4 Backward Chains in the log

TOWARD FORMALIZING RECOVERY OF (ADVANCED) TRANSACTIONS 19

| field name | function |

LSN position within the LOG |

Tor

transaction id of delegator |

Tee

transaction id of delegatee |

| |
| |
| TorBC | delegator’s backward chain |
| |
| TeeBC |

delegatee’s backward chain |

Figure 1.5 Fields of the delegate log record

Data Structures. We must know which operations on which objects each
transaction ¢ is responsible for, i.e., its Op_List(t). For that we use the Trans-
action List and expand each transaction’s Object List found in conventional
Database Systems; we also add a delegate type log record.

Tr_List. The Transaction List [BHG87, GR93, MHL192] contains, for each
Trans-ID, the LSN for the most recent record written on behalf of that trans-
action, and, during recovery, whether a transaction is a winner or a loser.®
Ob_List. For each transaction ¢ there is an Ob_List(t) (In figure 7?7, Ob_List(t1)
contains the objects which #; is accessing after the delegation.) In terms of
Op_List: Ob_List(t) = {ob | Ips,[0b] € Op_List(t)}, i.e., the objects for which
there is an operation for which % is responsible. The operation p;,[0b] may have
been invoked by t¢ and the responsibility transferred to ¢ via delegation.

When transactions are responsible for specific operations (not a whole ob-
ject), a certain object may appear in more than one Ob_List (but the associated
operations will be different).!® We identify the operations that a transaction
is responsible for by introducing the notion of scope.

For each object ob in Ob_List(t1) there is a set of scopes Scopes, that covers
the operations to ob for which t1 is currently responsible. A scope is a tuple
(to,l1,12) where tg is the transaction that actually did the operations (the
invoking transaction), l; is the first, and l; the last LSN in the range of log
records that comprise the scope.

Delegate Log Records. We add a new log record type: delegate. Its type-
specific fields (see figure 1.5) store the two transactions and the object involved
in the delegation.

Normal Processing. We sketch how ARIES/RH extends ARIES by show-
ing how to handle delegations and operations. Other transactional events are
modified as well; the reader is referred to [PR97] for a complete account.

20

RECOVERY

1. ADJUST scoPES. If this is the first operation of £ to ob since either ¢ started

or last delegated ob we must open a new scope. Otherwise, there is an
active scope of t on ob that we must extend.

if ob ¢ Ob_List(t) then Ob_List(t) < Ob_List(t) U {ob} ;
if (¢,-,)'" ¢ Ob_List(t)[ob]
then create new scope

else eztend existing scope

delegate(t1, t2, ob)

1. WELL-FORMED? Verify that ob € Ob_List(t;), which tests, for this case,

the precondition: pre(delegate(t1,tz,0p[ob])) = (ResponsibleTr(op[ob]) =
t1).

. PREPARE LOG RECORD(S).

Record delegator, delegatee.
Rec.tor < t1; Rec.tee + ta;
Link this log record into t:’s and ¢2’s backward chains.

Rec.torBC + BC(tl).Pre'uLSN; Rec.tee BC + BC(tz).Pre'uLSN.

. TRANSFER RESPONSIBILITY. Move operations on ob from Op_List(t1) to

Op_List(tz).
Add ob to delegatee’s Ob_List and record that ob was delegated by ¢;.
Ob_List(ty) + Ob_List(tz) U {ob} ; Ob_List(t:)[ob].deleg + t;.

Pass delegator’s Scopes for ob to the delegatee and remove ob from the
delegator’s Ob_List.

. WRITE DELEGATION LOG RECORD(S).

Write log record and mark it as the current head of the backward chains
of delegator and delegatee.

LOG[CurrLSN] + Rec; BC(t1) + CurrLSN ; BC(t;) + CurrLSN.

Crash Recovery. In the rest of this section, we present the recovery phase
of ARIES/RH, which includes a forward pass and a backward pass.

Forward Pass. For brevity, we describe only the results of the forward pass
of recovery. Details can be found in [PR97]. Before the first pass of recovery
starts, Winners — Losers = ¢. At the end of the forward pass Winners,
Losers, and Object Lists are up to date, including the scopes of the operations.
Specifically, after the Forward Pass the state is:

Ob_Lists are restored to their state before the crash, for all transactions.

TOWARD FORMALIZING RECOVERY OF (ADVANCED) TRANSACTIONS 21

] Winners has all the transactions whose operations must survive (i.e., which
had committed before the crash). Losers has those whose operations must be
obliterated.

] LoserObs includes all objects in the Ob_Lists of loser transactions. We compute
it after the forward pass ends, as LoserObs = U Ob_List(t).

tcLosers

Backward Pass. To undo loser transactions, ARIES continually undoes the
operation with maximum Log Sequence Number (LSN), ensuring monotonically
decreasing (by LSN) accesses to the log, with the attendant efficiencies.

ARIES undoes all the operations invoked by a loser transaction. In the
presence of delegation, what we need instead is to undo all the operations that
were ultimately delegated to a loser transaction. Notice that by undoing the
loser operations instead of the operations invoked by loser transactions, we are
in fact applying the delegations, as we undo according to the fate of the final
delegatee of each operation.'?

We show in [PR97] that it suffices to keep information on operation scopes to
efficiently undo loser operations. There we also discuss how undo and delegation
are integrated in the backward pass. Operation and delegation are the only
records that require special processing. As with ARIES, ARIES/RH also visits
each log record at most once and in a monotonically decreasing way. This
reduces the cost of bringing the log from disk.

1.4.2 Formalizing some properties of ARIES and ARIES/RH

Policies. ARIES assumes the STEAL and NO-FORCE policy combination. That
is, the restrictions associated with NO-STEAL and FORCE, which we formalize
next, do not apply.

NO-STEAL requires that no uncommitted operations be propagated to the
stable database. If an operation is stable, its transaction must have committed.
Formally:

vD(%) ¢ prefiz(L(?D), Ve c D(°b)
(pt[ob] = pier) €) = (commiit(t) =, (o) €)).

Notice that this specification of NO-STEAL does not impose an ordering or
logging strategy; nor does it say how to record that a transaction is considered
committed.

FoRCE prescribes that updated objects must be in the persistent database
for a transaction to commit. Formally:

vD() ¢ prefiz(L(9?), Ve € D) (commit(t) — ;) €)) =
(pe[ob] = p(es) €).

Operation execution, Commit, and Abort.

22 RECOVERY

WAL: No operation to the stable database can be installed before a corre-
sponding record of the operation is stored in the persistent log. This is called
the Write-Ahead Log (WAL) rule. Formally:

VD(op) € prefiz(Lop)) Ve € D(op)(pt[0b] =D (o)) = (pt[ob] 5L €))

Semantics of Transaction Abort: If a transaction s is aborted, no other
transaction ¢ can operate on the same object until s’s operations are aborted.
Formally:

VsVt (gs[0b] =2 pi[ob] A abort(s) —¢ pe[ob]) = abort[gs[ob]] = p:[ob]

Commit: The system considers a transaction committed when it has per-
sistently logged all the operations and the commit record for the transaction.
Formally:

VL € prefiz(L) Ve € SL

(commit(t) =L €) = (commit(t) —sc e) N Vpr € L(p: —5c €)

Winners, Losers, LoserObs.

m ¢t € Winners < (Commit(t) — Crash)
t is a winner if it committed before the crash.

m ¢ € Losers < (Begin(t) = Crash A ACommit(t) € H)
t is a loser if it was active but did not commit before the crash.
Losers: an active transaction is by default a loser. If there is a commit
record before the crash, its transaction is moved to Winners. Note that
these sets are disjoint.

m LoserObs = U Ob_List(t)

tcLosers
i.e., ob € LoserObs = 3t € Losers : ob € Ob_List(t)

LoserObs is the set of all objects for which there is a loser transaction
that is responsible for an operation to that object. This means that a
loser object has at least one operation that will be undone.

Specification of ARIES. In the following, post(P) refers to the postcondition
that a particular phase P (one of analysis, redo, undo) of ARIES satisfies.

1. After a crash, £L = ¢

2. post(analysis) =
VpVobVi(((p:[ob] € SL A commit(pe[ob]) ¢ SL) & p:[ob] € Losers))

3. post(analysis) =
VpVobVt(pf[ob] € SL < pFlob] € Losers)

4. post(analysis) =
VpVobVi((pe[ob] € SL A commit(p;[ob]) € SL) < p:[ob] € Winners)

8.

9.

TOWARD FORMALIZING RECOVERY OF (ADVANCED) TRANSACTIONS 23

. post(redo) = (L = SL)

. post(undo) =

VpVob((p[ob] € Losers) =
(undo®(plob]) € L) A VgVob(g[ob] — ¢ plob] =
undoR(p[ob]) —r undoR(q[ob])))

Here p[ob] and g[ob] indicate operations that may be done by a transaction
or the system.

VpVtVob(undo® [p:[ob]] < abort®[p;[ob]])
post(undo) = L% ¢ prefiz(L)

ARIES is not active outside the recovery period.

Formalizing ARIES/RH. Because our framework is operation-based and not
transaction-based, extending the formalization (preceding) and the proofs (fol-
lowing) for ARIES to ARIES/RH only entails reasoning about chains of dele-
gations, represented by scopes.

1.4.3 Proof Sketches

With the logging and commit/abort protocols and the recovery rules from
Section 1.3, we show examples of proving that ARIES specifications conform
to the specification of recovery protocols.

ARIES Specification 9 can be used to show that the recovery Specification
5 holds.

As a more involved example, LOG-CT ensures that at a crash, all com-
mitted operations are indeed in S£. From ARIES Specifications 2, 3 and
6, we can infer that all uncommitted transaction operations and recovery
system operations are undone. Further, these are the only operations
that are undone. Recovery system operations include undos of aborted
operations. Hence, operations that are to be aborted are also undone.
Further these operations are undone in an order consistent with ARIES
Specification 6. Hence, we can infer Recovery Rule 1.

Proving that an implementation of the ARIES protocol satisfies ARIES speci-
fications involves:

1.

modeling the dirty page table, the transaction table, checkpoints, and
different types of LSNs.

24 RECOVERY

2. expressing the requirements stated above in terms of the properties of
these entities with respect to the transaction management events and
object events (i.e., during normal transaction processing) as well as during
recovery steps.

3. given the pseudo-code that provides the details of transaction processing
in terms of these concrete entities, demonstrating that the correctness
requirements on these entities in fact hold.

1.5 FURTHER WORK AND SUMMARY

We showed how our recovery framework can be used to deal with the basic
recovery methods for atomic transactions that work in conjunction with in-
place updates, the Write-Ahead Logging (WAL) protocol and the no-force/steal
buffer management policies. Also, for ease of exposition, we assumed that re-
covery processing was completed before new transactions were allowed. We also
showed how to add delegation, and how the specifications and implementations
were modified.

The building blocks developed in Section 2, namely, histories, their projec-
tions, and the properties of the (resulting) histories are sufficient to deal with
situations where these and other assumptions are relaxed, suggesting further
work.

Beyond in-place updates. Some recovery protocols are based on the pres-
ence of shadows in volatile storage. Updates are done only to shadows. If a
transaction commits, changes made to the shadow are installed in the stable
database. If it aborts, the shadow is discarded. To achieve this each object ob
in such an environment is annotated by its version number ob!, ob?,..0b™ where
each version is associated with a particular transaction. When intention lists
are used, some protocols make use of intention lists whereby operations are
explicitly performed only when a transaction commits. The properties of these
protocols can be stated by defining projections of history #H for each active
transaction along with a projection with respect to committed transactions.

Considering object to page mapping issues. The model of Section 2
assumed that the object was both the unit of operation as well as the unit of
disk persistence. In general, multiple objects may lie in a page or multiple pages
may be needed to store an object. To model this, one more level of refinement
must be introduced: the operations on objects mapping to operations on pages.

Reducing delays due to crash recovery. Checkpointing is used in prac-
tice to minimize the amount of redo during recovery. We can model checkpoints

TOWARD FORMALIZING RECOVERY OF (ADVANCED) TRANSACTIONS 25

as a projection of the history SL and, using that, redefine the requirements of
the redo part of the protocol. Some protocols allow new transactions to be-
gin before crash recovery is complete. After the transactions that need to be
aborted have been identified and the redo phase is completed, new transaction
processing can begin. However, objects with operations whose abortions are
still outstanding cannot be accessed until such abortions are done. This can
be modeled by unraveling the recovery process further to model the recovery
of individual objects and and by placing constraints on operation executions.

Avoiding unnecessary abortions. In a multiple node database system, the
recovery protocol must be designed to abort only the transactions running on
a failed node [MR95]. This implies that not all transactions that have not yet
committed need be aborted. To model this, the crash of the system must be
refined to model crash of individual nodes and the recovery requirement as well
as the protocols must be specified in a way that only the transactions running
on the crashed nodes are aborted.

Summary

We have used histories, the mainstay of formal models underlying concurrent
systems, as the starting point of our framework to deal with recovery. The
novelty of our work lies in the definition of different categories of histories,
different with respect to the transaction processing entities that the events
in a history pertain to. The histories are related to each other via specific
projections. Correctness properties, properties of recovery policies, protocols,
and mechanisms were stated in terms of the properties of these histories. For
instance, the properties of the transaction management events and recovery
events were specified as constraints on the relevant histories. The result then
is an axiomatic specification of recovery. We also gave a sketch of how the
correctness of these properties can be shown relative to the properties satisfied
by less abstract entities. Further, we showed how to extend the framework
and prove correctness when we include delegation, whose semantics allows the
construction of advanced transaction models. We concluded discussing the
directions in which to proceed to broaden the scope of our work.

Notes

1. This is affected by both concurrency control policies and recovery policies.
2. Formally, HeH® = 3*~ o where o is the usual composition operator.

3. (%) = p,[ob] o pz[ob] o ... 0 pn[ob], indicates both the order of execution of the
operations, (p; precedes p;11), as well as the functional composition of operations.

4, Notice that #(°®) = #p and #H(°®)—RpU4p — 31

26 RECOVERY

5. This is one of the reasons we prefer to have ways by which the commitment of an
operation can be dealt with in addition to the commitment of transactions. Furthermore,
we desire a formalism that can uniformly deal with recovery in advanced transaction models
(where a transaction may be able to commit even if some of its operations do not).

6. Some variants of ARIES merge the two forward passes into one, thus we also use only
one forward pass.

7. To avoid undoing an operation repeatedly should crashes occur during recovery.
8. Notation delegate(t;,t2, 0b) indicates delegation of all operation of ¢; on ob to t3.

9. For each transaction ¢, Tr_List(t) contains the head of the BC(t), e.g., in fig. 1.4,
BC(t) is Tr_List(t).

10.For example, this can occur in the case of non-conflicting operations, such as increments
of a counter.

11.To reduce clutter, ‘.’ denotes a field that we do not change or are not interested in.

12.In ARIES, all loser operations are those invoked by loser transactions, so ARIES/RH
reduces to ARIES when there is no delegation.

References

[BHG8T7] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control
and Recovery in Database Systems. Addison-Wesley, Reading, Mass., 1987.

[CMSW93] Luis-Felipe Cabrera, John A. McPherson, Peter M. Schwarz, and
James C. Wyllie. Implementing Atomicity in Two Systems: Techniques,
Tradeoffs and Experience. IEEE Trans. on Software Engineering, 19(10):950—
961, October 1993.

[CR94] Panos K. Chrysantis and Krithi Ramamritham. Synthesis of Extended
Transaction Models using ACTA. ACM Trans. on Database Systems, pages
450-191, September 1994.

[GR93] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, San Mateo, Calif., 1993.

[Kuo96] D. Kuo. Model and Verification of a Data Manager Based on ARIES.
ACM Trans. on Database Systems, pages 427-479, December 1996.

[MHL*92] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter
Schwarz. ARIES: A transaction recovery method supporting fine-granularity
locking and partial rollbacks using write-ahead logging. ACM Trans. on
Database Systems, 17(1):94-162, March 1992.

ory D. Molesky and Krithi Ramamritham. Recovery protocols for share

MR95]| Lory D. Molesk d Krithi R ith R Is for shared
memory database systems. In Proc. of ACM SIGMOD International Con-
ference on Management of Data, San Jose, Calif., May 1995.

[PR97] Cris Pedregal Martin and Krithi Ramamritham. Delegation: Efficiently
rewriting history. In Proc. of IEEE 13th International Conference on Data
Engineering, Birmingham, UK, April 1997.

