Delegation: Efficiently Rewriting History]L

Cris Pedregal Martin and Kriths Ramamritham
Department of Computer Science
University of Massachusetts

Ambherst, Mass. 01003-4610

{ cris,krithi} @cs.umass.edu

Technical Report 1995-090
October 26, 1995

Abstract

The notion of transaction delegation, as introduced in ACTA, allows a transaction
to transfer responsibility for the operations that it has performed on an object
to another transaction. Delegation can be used to broaden the visibility of the
delegatee, and to tailor the recovery properties of a transaction model. Delegation
has been shown to be useful in synthesizing Extended Transaction Models.

With an efficient implementation of delegation it becomes practicable to realize
various Extended Transaction Models whose requirements are specified at a high
level language instead of the current expensive practice of building them from
scratch. In this paper we identify the issues in efficiently supporting delegation
and hence extended transaction models, and illustrate our solution in ARIES,
an industrial-quality system that uses UNDO/REDO recovery. Since delegation
i1s tantamount to rewriting history, a naive implementation entails frequent and
costly log accesses, and complicates recovery protocols. Our algorithm achieves
the effect of rewriting history without rewriting the history, i.e., the log, resulting
in implementations that realize the semantics of delegation at minimal additional
overhead and incur no overhead when delegation is not used. Besides showing its
efficient application to ARIES, we also show the correctness of the implementation
of delegation.

Our work indicates that it is feasible to build efficient and robust, general-purpose
machinery for Extended Transaction Models. It also leads toward making recovery
a first-class concept within Extended Transaction Models.

Keywords: Extended Transaction Models, Transaction Management, Recovery.

t Supported in part by grants from Sun Microsystems and the National Science Foundation.

Contents

1 Introduction 1
2 Delegation: Concepts, Properties, Examples 3
2.1 What: Concepts and Properties 3
2.1.1 Assumptions and Notation 3

2.1.2 Properties 3

2.2 Why: Synthesizing Extended Transaction Models — Examples 5
2.2.1 Split Transactions 5

2.2.2 Nested Transactions 6

3 How: Rewriting History Efficiently 7
3.1 Operational Semantics Lo 7
3.2 Implementing Delegation Efficiently 9
3.3 Conventional Recovery: ARIES, 10
3.4 Data Structures 11
3.5 Normal Processing 13
3.6 Recovery L 14
3.6.1 Forward Pass 15

3.6.2 Backward Pass 16

3.7 Implementing delegation imn EOS oo oL 19

4 Discussion 20
4.1 Correctness e 20
4.2 Efficiency 23

5 Related Work 24

6 Conclusions 25

1 Introduction

The transaction model adopted in traditional database systems has proven inadequate for novel
applications of growing importance, such as those that involve reactive (endless), open-ended
(long-lived), and collaborative (interactive) activities. Various Fztended Transaction Models
(ETMs) have been proposed [10], each custom built for the application it addresses; alas, no
one extension is of universal applicability. To address this problem, we have been investigating
how to create general-purpose and robust support for the specification and implementation of
diverse Extended Transaction Models. Our strategy has been to work from first principles,
first identifying the basic elements that give rise to different models and showing how to realize
various Extended Transaction Models using these elements, and then proposing mechanisms for

implementing these elements.

A first step was ACTA [6], that identified, in a formal framework, the essential compo-
nents of Extended Transaction Models. In more operational terms, ASSET [5] provided a set
of new language primitives that enable the realization of various Extended Transaction Mod-
els in an object-oriented database setting. In addition to the standard primitives Initiate (to
initialize a transaction), Begin, Abort, and Commit, ASSET provides three new primitives:
form-dependency, to establish structure-related inter-transaction dependencies, permit, to allow
for data sharing without forming inter-transaction dependencies, and delegate, which allows a
transaction to transfer responsibility for an operation to another transaction.

Traditionally, the transaction invoking an operation is also responsible for committing or
aborting that operation. Delegation separates these two concerns, so that the invoker of the
operation and the transaction that commits (or aborts) the operation may be different. In
effect, to delegate is to rewrite history, because a delegation makes it appear as if the delegatee
transaction had been responsible for the delegated object all along, and the delegator had nothing
to do with it.

Delegation is useful in synthesizing Extended Transaction Models because it broadens the vis-
ibility of the delegatee, and because it controls the recovery properties of the transaction model.
The broadening of visibility is useful in allowing a delegator to selectively make tentative and
partial results, as well as hints such as coordination information, accessible to other transactions.
The control of the recovery makes it possible to decouple the fate of an update from that of
the transaction that made the update; for instance, a transaction may delegate some operations
that will remain uncommitted but alive after the delegator transaction aborted. Examples of
Extended Transaction Models that can be synthesized using delegate are Joint Transactions,
Nested Transactions, Split Transactions, and Open Nested Transactions [6, 11].

Biliris et al. [5] gave a high-level description of how to realize the three new ASSET prim-
itives. Briefly, permit is done by suitably adding the permittee transaction to the object’s
access descriptor. Form-dependency is done by adding edges to the dependency graph, after
checking for certain cycles. Whereas the realization of permit and form-dependency are rather

straight-forward, close attention must be paid to logging and recovery issues in the presence of
delegation. This is because recovery usually keeps some kind of system history (e.g., log) and
delegation is tantamount to rewriting history (a delegated object’s operations appear to have
been done by the delegatee).

Developing a robust, efficient, and correct implementation of delegation is the goal of this
paper.

Specifically, to further the goal of providing general purpose machinery to support the spec-
ification and implementation of arbitrary Extended Transaction Models, we propose here an
efficient implementation of delegation based on ARIES [14].(Also, we briefly suggest how to
implement delegation on EOS [4].) Our additions allow the “efficient Rewriting of History.” We
hence call our implementation ARIES/RH.

By providing delegation, we add substantial semantic power to a conventional Transaction
Management System, allowing it to capture various Extended Transaction Models. We efficiently
achieve this expressiveness by carefully “piggy-backing” the delegation-related processing onto
the routine processing. During recovery, our algorithm neither adds costly log sweeps to the
recovery algorithm, nor does it demand the actual rewriting of history, i.e., the log.

In this paper we argue that:

o Delegation is a powerful, important primitive for realizing Extended Transaction Models.
We describe its properties and show how it can be used to manipulate visibility and
recovery properties of transactions.

o It is possible to implement delegation in an industrial-strength transaction management
system. We illustrate by extending ARIES. We thus obtain the ETM semantics with little
loss of efficiency, and when delegation is not used no overheads are incurred. We also
demonstrate the correctness of our algorithm.

The remainder of the paper is organized as follows. In Section 2 we describe the properties
of delegation and show how it can be used to synthesize some well-known extended transaction
models. In section 3 we develop delegation in the context of a robust, industrial-grade transaction
management system. First we explain delegation’s semantics in terms of rewriting history. We
then discuss the needed data structures and describe how we modify both the normal processing
and the recovery phases to support delegation, and explain how to apply our algorithm to ARIES.
We conclude the section sketching how to apply the same ideas to EOS, another transaction
management system.

In section 4 we discuss why our algorithm correctly implements delegation and why it does
it efficiently. We review related work in section 5. In section 6 we present our conclusions and
discuss future work.

2 Delegation: Concepts, Properties, Examples

In this section we examine the properties of delegation and present its application to extended

transaction models. First we introduce some notation, then we explain delegation in terms of

visibility and recovery, and then point out some important properties. In the rest of the section

we present examples of extended transaction models and show how to synthesize them using

delegation.

2.1

What: Concepts and Properties

Here we describe the properties of delegation, introduce notation and state our assumptions.

2.1.1

Assumptions and Notation

t,to,t1,%s, ... denote transactions; ob, a,b, ... denote objects in the database.

update is a generic operation on database objects. We write update[ob] and leave other details
of the update unspecified. Updates are done in-place on the updated object. Note that not all
update operations conflict with each other.

delegate(t,, s, update[ob]) denotes delegation by t; to ¢, of update[ob].

Invoking transaction. We call the transaction that invoked the update on the object the
invoking transaction. We write update(t, ob] when we wish to indicate that ¢ is the invoking
transaction for that update. Updates that are never delegated, i.e., whose responsible transaction
(see below) is always their invoking transaction, are called boring updates.

H denotes the history of the database, which contains events such as delegate and update, with
a partial order indicated ¢ — ¢’ where € precedes ¢’. Operation invocations are events.

ResponsibleTr. Let transaction ¢ update object 0ob. We say that ¢ is responsible for its updates
to ob, when t is in charge of changes to ob. More precisely, ResponsibleTr(update[ob]) = ¢ holds
from when ¢ performs update[ob], or is delegated update[ob] until ¢ either terminates or delegates
update[ob]. Notice that without delegation, the transaction responsible for an update is always
the invoking transaction.

Op_List. The dual of ResponsibleTris the Op_List. It contains the operations a transaction is
responsible for: Op_List(t) = {update[ob] | ResponsibleTr(update[ob]) = t}.

2.1.2 Properties

Pre- and Postconditions. When t; executes delegate(ty,ts, update[ob]), we say that ¢; trans-

fers its responsibility for update[ob] to transaction t,, i.e.,

pre(delegate(ty,ty, update[ob])) = (ResponsibleTr(update[ob]) = t,)
t, must be the transaction responsible for update[ob] in order to delegate the update.

L All updates are boring in the absence of delegation.

o post(delegate(ty,t,, update[ob])) = (ResponsibleTr(update[ob]) = t,)
After ¢, delegates update[ob] to t,, t, becomes the responsible transaction for the update.

Operation delegate(t,,ts, update[ob]) is well formed when ¢; and ¢, are initiated and not

terminated, and ¢; is responsible for update[ob).

Commit/Abort of Updates. In the presence of delegation, the fate of updates to an object
is not necessarily linked to the transaction which made the updates, but instead it is linked to
the fate of the transaction to which the operation was last delegated. For instance, if ¢y does
update|ob], then delegates update[ob] to t;, and t, subsequently aborts, the changes t, made to
ob via update|ob] will still survive if £; commits while it is still responsible for update|obd], i.e.,

o (Commit(t) € H) = (Vupdate[ob] € Op_List(t), (commit,(update[ob]) € H)) A
((Jupdate[ob] € Op_List(t), commit,(update[ob]) € H) = (Commit(t) € H))
That transaction { commits means that all of the updates in its Op_List must be committed.
Notice that these are the updates for which ¢ is responsible.

o (Abort(t) € H) < (Vupdate[ob] € Op_List(t), (abort,(update[ob]) € H))
That transaction t aborts requires that all of the updates it is responsible for (i.e., those in its
Op_List) will be aborted.

The events Commit(t) and Abort(t) denote the commit and abort of transaction ¢, and
commit,(update|ob]) and abort,(update[ob]) indicate the permanence or obliteration of the changes
done by update[ob]. In the presence of delegation, the changes may have been made by either ¢
or other transaction(s) which eventually delegated update[ob] to t.

Concurrent Delegations. An operation can be delegated only by the transaction that is re-
sponsible for it. Since ResponsibleTr(update|ob]), is at any given time, unique, only one trans-
action can delegate an operation at any point in time. Thus, while a history may contain two or
more delegations of the same operation by different transactions, the delegations for the same

operation cannot occur concurrently.

Granularity: delegating one operation vs. set of operations. In what we have discussed,
a transaction delegates a single operation with each invocation of delegate. Delegation of a
set of operations in a single invocation can be considered as the atomic invocation of multiple
delegations, one for each of the operations in the set. Delegating an object is tantamount to
delegating all the operations on that object.

In our implementation we consider the delegation of objects because in a majority of practical
situations that we have come across, delegation occurs at the granularity of objects. Also, in
the examples discussed in the next subsection, transactions delegate objects.

Note that it is possible for several transactions to update an object concurrently (say, when
the updates commute). Delegation of one such operation by one of the concurrent transactions
only delegates that transaction’s operation on the object. The other transactions’ operations
are not affected. Similarly, when a transaction delegates an object, only that transaction’s
operations on the object are delegated.

Also note that a transaction can perform operations on an object even after it has delegated
(an operation on) that object. Of course, since after delegation the system considers the dele-
gated operations to have been done by the delegatee, a transaction’s new operation may conflict
with one of its own — one which has been delegated.

2.2 Why: Synthesizing Extended Transaction Models — Examples

In this section we motivate delegation through examples of its application in the synthesis of
two extended transaction models, split /join transactions and nested transactions.

Inheritance in Nested Transactions [15] is an instance of delegation. Delegation from a child
transaction ¢, to its parent ¢, occurs when ¢, commits. This is achieved through the delegation
of all the changes done by t. to t, when ¢{. commits. That is, all the changes that a child
transaction is responsible for are delegated to its parent when the child commits.

A transaction can delegate at any point during its execution, not just when it aborts or
commits. For instance, in Split Transactions [16], a transaction may split into two transactions,
a splitting and a split transaction, at any point during its execution. A splitting transaction %,
may delegate to the split transaction ¢, some of its operations at the time of the split. Thus, a
split transaction can affect objects in the database by committing and aborting the delegated
operations even without invoking any operation on the objects.

In the remainder of this section we show the code for split and nested transactions, syn-
thesized using delegation and the other ASSET primitives. Other transaction models using
delegation include Reporting Transactions and Co-Transactions described in [7, 8]. The former
periodically reports to other transactions by delegating its current results. In the latter, control
is passed from one transaction to the other transaction at the time of delegation.

2.2.1 Split Transactions

In the split transaction model [16] a transaction ¢; can split into two transactions, ¢; and t,.
Operations invoked by £; on objects in a set ob_set are delegated to t,. t; and ¢, can now
commit or abort independently. Conversely, two transactions, say ¢, and £5 can join to form one
transaction t;.

Consider the following code used by ¢; to split off transaction ¢, (the code for ¢y is that of
function f.)

t2 = initiate(f);
delegate(self(), t2, ob_set); // self returns t1
begin (t2);

ty can join t; by executing:

wait (£2);
delegate (t2,t1); // t2 delegates *all* objects

2.2.2 Nested Transactions

Nested transactions are among the first extended transaction models; they are discussed by
Moss [15]. A nested transaction consists of a root (or parent) transaction and nested component
transactions, called subtransactions. The subtransactions can themselves be nested transactions.
Subtransactions execute atomically with respect to their siblings, and are failure atomic with
respect to their parent. That is, they can abort without causing the whole transaction to abort.

A subtransaction can potentially access any object that is currently accessed by one of its
ancestor transactions without creating a conflict. Abort semantics for both root transactions
and subtransactions are similar to abort semantics in atomic transactions. Commit, however,
has different semantics for the root and the subtransactions. When a subtransaction commits,
the objects modified by it are made accessible to its parent transaction. The effects on objects
are only made permanent on the commit of the topmost root transaction.

We illustrate how nested transactions are translated into the ASSET primitives with a simple
two-level example of trip arrangements.

tid t;
t = trans {

trans { airline_res(); }
trans { hotel_res(); } }

If the airline reservation fails, then the trip is canceled. If the hotel reservation fails, the trip
is canceled too, and the effects of the airline reservation should not be made permanent. The

nested transaction above is translated into:

tid t;

t = initiate(trip)
begin(t);

commit (t);

where the function trip is

void trip()

{
tid t1;
t1 = initiate(airline_res);

permit (self(),t1);

begin(t1);

if (twait(t1))
abort(self());

delegate(tl,self());

commit(t1);

tid t2;

t2 = initiate(hotel_res);

begin(t2);

if ('wait(t2))
abort(self());

delegate(t2,self());

commit (t2);

}

We assume that t1 and t2 will each abort if they are unsuccessful. If they succeed, they
delegate their updates to t. Otherwise any updates made so far are discarded. Note that after
it has delegated all its changes, the fate of a reservation transaction does not matter.

3 How: Rewriting History Efficiently

In this section we discuss how to efficiently implement delegation and present our algorithm RH
(rewrite history), as follows. In 3.1 we introduce the operational semantics of delegation in the
context of a generic Database System (DBS). In 3.2 we examine alternative solutions and give
an overview of our algorithm.

In 3.3 we set the stage with an overview of ARIES, whose UNDO/REDO protocol requires

two passes, one forward and one backward, over the log.

The following subsections explain the algorithm ARIES/RH in detail: we present the data
structures involved in 3.4, then we describe in 3.5 what ARIES/RH does during normal process-
ing. In 3.6 we discuss how ARIES/RH’s recovery realizes delegation efficiently using the same
passes over the log as ARIES.

We end the section in 3.7 with an overview of how to apply RH to a different recovery
protocol, NO-UNDO /REDO as exemplified by EOS.

3.1 Operational Semantics

In a DBS the log is the system’s history, as it contains the records of all updates and transactional
operations. The idea of delegation is to rewrite history, selectively altering the log. Suppose that
delegate(t1,ts, 0b) is the first delegation of ob by t;. Applying this delegation can be visualized
as iterating through the log into the past, modifying the records pertaining to ob, so that each
record of an access to ob by ¢; will now show that the access was done by t,.

K < currLSN (LSN of delegate record)
while LOGIK] is not the initiate record for ¢,
if LOG[K] is an update to ob by ¢,
then setTransID(K,¢,) alter it to look done by t,
K « prevLSN(K,¢;) follow t,’s BC

Figure 1: Operational semantics of delegate(ty,ts, 0b)

The log is a list held in stable storage, whose elements are identified by monotonically
increasing values of the Log Sequence Number (LSN). During normal execution, the only valid
operation is appending a log record to the end of the log (with the corresponding increment of
the current Log Sequence Number). During recovery, the log can be rolled back and replayed,
by going to the LSN of the last checkpoint and extracting, sequentially, the records from there
on.

Figure 1 gives the operational description of delegation in terms of the log, for a scenario
where K indicates the LSN being operated on in the current iteration. Records have a PrevLSN
field, that contains the LSN of the previous record for the same transaction. The chain formed
by the previous LSN pointers of log records of a transaction is called Backward Chain (see 3.3).
The delegate record is a new type that records a delegation, with pointers to the previous
records of both the delegator and delegatee (see section 3.4).

In figure 1 we use the following operations on the log:

prevLSN(K, ¢;) which returns the Log Sequence Number of the previous (most recent) log record
written by ¢; (i.e., before, or to the left of K).

setTransID(K,t;), which does LOG[K].TransID < t,, making the record appear as if it had been
written by the transaction ¢,.

The fields in a log record are: LSN (log-sequence number), Type (update, delegation, commit, etc.),
Trans-ID (the ID of the transaction that created the record), and Data. For delegate records there also
exist two LSN pointers to the delegator and delegatee (see 3.4).

Ezample 1. Consider the log fragment (see figure 2):

...update[t,, a], update[t,, z], update[t,, a], update[t,, b], update[t,, a], update[t,, y]
After the application of delegate(ty, {2, a), the log looks like:

.. .update[ty, a], update[t,, z], update[t,, a], update[t,, b], update[t,, a], update[t,, y]

100 101 102 103 104 105 106

update |update |update |update |update |update |delegate
t; a ty X t, a ty b t; a ty, 'y

before rewriting

a
Aty

time ——— =

100 101 102 103 104 105 106
update |update |update |update |update |update |delegate
t t t t b t t
Xty alty x 2 2 |1 taalty v |2y,

after rewriting

Figure 2: Delegation Log Example

3.2 Implementing Delegation Efficiently

The idea of rewriting history by modifying the log is simple, but its implementation is not. The
naive implementation of the algorithm in figure 1 would be to apply each delegation to the log
as it is issued. That is, every time a delegation is issued, the system traverses the log backwards
modifying the records pertaining to the object being delegated. This “eager” approach carries
high performance costs, and is also hard to prove correct. The performance penalty is due to the
random nature of the accesses (as opposed to the usual append-only to logs), and the fact that a
single delegation will generate many accesses, in principle sweeping the whole log [17]. Ensuring
recovery correctness is hard because we manipulate the log outside the usual append-only mode,
complicating the model with extra data,? whose integrity in the face of crashes is not guaranteed
by the standard recovery algorithm and must be ensured ad-hoc.

A better approach may be to use a “lazy” algorithm that defers the alteration of the log to
recovery. This is based on the observation that during normal processing it is not necessary to
have the delegations applied to the log. The algorithm can keep track of the effect of delegations
in volatile data structures, and log the delegations to have the necessary information after
a crash. It modifies the log — rewrites history — during recovery, which manipulates the log
anyway, based on the information on the log about updates and delegations. For example,
in UNDO/REDO (see section 3.3), the algorithm uses the logged information on updates and
delegations to reconstruct the information about delegations during the analysis/redo (forward)
pass. Then in the undo (backward) pass, it modifies the log as suggested in section 3.1 and
figure 4, moving records from the delegator’s backward chain to the delegatee’s, and rewriting
the record to make it appear as if created by the delegatee.

Although this 1s workable, it still suffers from drawbacks. Because it modifies the log in
other than append mode, issues of correctness in the face of failure and performance must be
addressed. It is possible to solve the correctness problem by ensuring that each BC switch

2Extra data: information accessed by transactions that is not part of the database schema; for example, the

log, the system clock, wait-for graph. Gehani et al. [11] discuss the issues of correctness with extra data.

LOG /\/

—
Checkpoint Failure
Analysis
Redo All
________ edo PASSES
Undo Losers

Figure 3: ARIES passes over the log

is done atomically.®* The performance, however, is inherently hostage to the way the log is
accessed. Recall that in general the log does not fit into volatile storage. The buffering can
result in thrashing, as the algorithm needs to jump over possibly large sections of the log to

follow backward chain pointers.*

To avoid these pitfalls, we propose RH, a “lazy” algorithm for rewriting history that does
not modify the log. We give a brief overview here. As pointed out before, delegation can be
supported easily during normal processing. During normal processing, we use a volatile table
to keep track of which objects are updated by which transactions. When a delegation happens,
we change the corresponding object binding, and log delegations to be able to reproduce the
change after the crash. During recovery, on encountering delegations during the log sweeps, we
reconstruct the bindings between operations on objects and transactions, but do not actually
rewrite the log records. We “rewrite the history” of the system not by modifying the log, but by
interpreting the log during recovery according to the delegations. That is, we obtain the desired
semantics — rewrite of the history according to the delegations — without having to actually

rewrite the log.

3.3 Conventional Recovery: ARIES

Before going into the details of the algorithm to implement delegation, we present the conven-
tional version of ARIES, to establish context and terminology.

ARIES uses an UNDO/REDO protocol, which means that after a crash, some updates will be
undone and some redone, according to whether the responsible transaction is a winner or loser.
ARIES scans the log in one or two forward passes: analysis and redo; and then a backward pass:
undo. See figure 3.

The Analysis pass starts at the last checkpoint, updates the information on active transac-
tions and dirty pages up to the end of the log, and also determines the “loser” transactions, to
be rolled back in the undo pass. The Redo pass repeats history, writing to the database those
updates that had been posted to the log but not applied before the crash. This re-establishes
the state of the database at failure time, including uncommitted updates. Because some ARIES

31t is easier to tolerate unusual log manipulations during recovery than during normal processing.
“The problems of this approach are discussed in detail in [17].

10

/\/\/\/\

100 BC(t1)
update update update update update update delegate
’[1 a t2 X ’[2 a tl ’[1 a t2 '(19'(
BC(t2
- v \/ _/ _/()
time
—_—=

Figure 4: Backward Chains in the log

variants merge the analysis and redo passes in a single forward pass, ARIES/RH relies on a
single forward pass to add delegation.

The Undo pass rolls back all the updates by loser transactions in reverse chronological order
starting with the last record of the log.

To facilitate its UNDO /REDO recovery, ARIES keeps, for each transaction, a Backward Chain
(BC) linking the transaction’s records in the log. That is, all the log records pertaining to one
transaction form a linked list, beginning with the most recent one, which is accessible through
the T'r_List. By following the BC, ARIES’s recovery avoids repeating undos, as it can insert
compensation log records (CLRs) to indicate how to undo an action or whether to skip an

already undone action.

In terms of Backward Chains, applying delegate(t,ts,0b) is tantamount to removing the
subchain of records of operations on ob from BC(t;), merging it with BC(¢,).

In the remainder of this section we explain ARIES/RH, our extension to ARIES for dele-
gation, in detail. We present the data structures, and we indicate how the normal processing
keeps the tables up to date. We then examine recovery processing, first the forward (analysis
& redo) pass and then the backward (undo) pass. Finally, we examine how to apply RH to a
different recovery protocol, NO-UNDO /REDO as exemplified by EOS.

3.4 Data Structures

For each transaction, we must know which operations on which objects it is responsible for, i.e.,
its Op_Last. To that end, we augment Transaction List and each transaction’s Object List found
in conventional DBSs. We also add a delegate type log record.

Tr_List. We use the standard Transaction List T'r_List [2, 12, 14] that contains, for each

Trans-ID, the LSN for the most recent record written on behalf of that transaction, and, during
recovery, whether a transaction is a winner or a loser (see 3.3). Notice that for each transaction

t, Tr_List(t) contains the head of the backward chain BC(t). Figure 4 shows the backward

chains in the delegation example of section 3.1.

11

object Scopes object Scopes

t,,102, 102
e a (ty)
(tq, 100, 104)
b (ty, 102, 106) X (t,,101, 101)
y (t,,105, 105)
Ob_List (t;) Ob_List (t,)

Figure 5: Object Lists after applying delegation of Example 1

Ob_List. Conventionally, associated with each transaction ¢ there is a set Ob_List(t).® In figure
5, Ob_List(t;) contains the objects ¢; is currently accessing. In terms of Op_List (see 2.1.1):
Ob_List(t) = {ob | Jupdate[to, 0b] € Op_List(t)}, that is, the objects for which there is an update
that ¢ is responsible for. Note that the update may have been originally done by ¢, and the
responsibility transferred via delegation.

Because transactions are responsible for specific updates, and not a whole object, a certain
object may appear in more than one Ob_List (but the associated updates will be different). For
example, this can occur in the case of non-conflicting updates, e.g., increments of a counter. We
identify the updates that a transaction is responsible for by introducing the notion of scope.
(The scope supports the notion of Op_List.)

Ezample 2. Consider a transaction ¢ that updates ob, then delegates 0b® to ¢,, then again
updates ob and finally delegates it to t,:

...updatelt, ob], delegate(t, t,, ob), update[t, ob], delegate(t, t2, 0b), abori(t,), commit(t,) ...

Regardless of ¢’s fate, if {; commits and ¢, aborts, the first update (delegated to ;) must
persist, whereas the second (to ¢,) must be undone.

For each object ob in Ob_List(t;) there is a set of scopes, stored in the field Scopes, covering
the updates to that object that ¢; is currently responsible for. A scope is of the form (o, {1, [2)
(see figure 5). to is the transaction that actually did the operations (the invoking transaction).
The other two are LSN values: [; is the first, and /5 the last LSN in the range of log records
that comprise the scope. See figure 5. This indicates that ¢; is responsible for all updates to ob
(by to) between the two LSNs.”

Delegate Log Records. We also introduce a new log record type: delegate. Its type-specific

5In some implementations Ob_List may have pointers to locks on the objects.
6Remember that delegate(t, 1, 0b) really delegates the updates to ob that ¢ is responsible for.
"This allows us to compute ResponsibleTr (and Op_List) without having to store/update it with each update.

12

| field name | function |
LSN position within the LOG
tor transaction id of delegator

torBC delegator’s backward chain

tee transaction id of delegatee
teeBC delegatee’s backward chain

Figure 6: Fields of the delegate log record

fields record the two transactions and object involved in the delegation (see 3.1). The fields are
shown in figure 6. The other record types are not modified, and are as discussed in 3.1.

3.5 Normal Processing

Our algorithm augments the normal processing of ARIES; we focus on the changes entailed by
delegation. We describe ARIES/RH in terms of how different events are processed. The current
value of the log sequence number is CurrLSN.

e begin(t)
1. INITIALIZE. Add t to T'r_List; create Ob_List(t).

e updatelt, ob]

1. ADJUST scOPES. If this is the first update ¢ does on o0b since ¢ started or last delegated ob
we must open a new scope. Otherwise, there is an active scope of ¢t on 0b that we must
extend.

if ob ¢ Ob_List(t) then Ob_List(t) < Ob_List(t) U {ob} ;

if (¢,_,-)® ¢ Ob_List(t)[ob]
then Ob_List(t)[ob].Scopes < (t, CurrLSN,CurrLSN) (create new scope)
else Ob_List(t)[ob].Scopes < (_,-,CurrLSN) (extend existing scope)

e delegate(ty,t,, 0b)
1. WELL-FORMED? Verify that ob € Ob_List(t;), which tests, for this case, the precondition
in 2.1.2: pre(delegate(t,t,, update[od])) = (ResponsibleTr(update[ob]) = t,).
2. PREPARE LOG RECORD(S).

Record delegator, delegatee.
Rec.tor < t;; Rec.tee + i,;

Link this log record into £;’s and t,’s backward chains.

Rec.torBC <+ BC(t;).PrevLSN; Rec.teeBC < BC(t;).PrevLSN.

3. TRANSFER RESPONSIBILITY. Move operations on ob from Op_List(t;) to Op_List(t,).
Add ob to delegatee’s Ob_List and record that ob was delegated by ;.

8We use ‘_’ in a field to denote we do not change it or are not interested in its content.

13

Ob_List(ty) < Ob_List(t;) U {ob} ; Ob_List(t;)[ob].deleg < t;.

Pass delegator’s Scopes for 0b to the delegatee and remove ob from the delegator’s Ob_List.

Ob_List(t;)[ob].Scopes <— Ob_List(t,)[0b].Scopes U Ob_List(t;)[ob].Scopes ;
Ob_List(t,) < Ob_List(t;) — {ob}.
Remark: We use a union because t; may already be responsible for some operations on ob before
receiving the delegation. Therefore, the Scopes field may actually contain several scopes: contiguous
ranges of LSNs on the log, each tagged with the transaction that initially was responsible for that
scope, which is the invoking transaction for those updates. (Notice that the scopes may overlap on
the log segment they cover but cannot share the same invoking transaction.)
4. WRITE DELEGATION LOG RECORD(S).

Write log record and mark it as the current head of the backward chains of delegator and
delegatee.
LOG[CurrLSN] <- Rec ; BC(t;) < CurrLSN ; BC(¢;) < CurrLSN.
e commit(t)
1. COMMIT OPERATIONS. Write to the log the operations for which ¢ is responsible.
2. WRITE COMMIT RECORD. Write a commit record to the log after the operations.
3. FLUSH LOG. Write to stable storage all records in the log, from the previous flush up to
the commit record inclusive.
e abort(t)

1. ABORT OPERATIONS. Undo the updates for which ¢ is responsible. Recall that any object
that had been delegated by the aborting transaction will no longer be in the transaction’s Ob_List,
unless it updated it after the delegation.

Obtain minLSN = min {begin | Ob_List(t)[ob].Scopes = (_, begin,_)} on objects in Ob_List(t).
For each object in Ob_List(t), undo all updates contained in its Scopes, writing to the log
the compensation log records, going backwards in the log until minLSN is reached.

2. WRITE ABORT RECORD. Write log abort record to the log.

3. FLUSH LOG. Flush log up to abort record.

The other transactional events are processed as usual [12, 14].

3.6 Recovery

After a crash, the transaction system must do some recovery processing to return to a consistent
state. This entails restoring the state from a checkpoint (retrieved from stable storage), and
using the log (also from stable storage) to reproduce the events after the checkpoint was taken.
For simplicity of presentation, we ignore checkpoints from now on, but it is easy to see how data
structures can be rebuilt using checkpoints instead of going back to the beginning.

14

Crash is the event that represents a failure; RecoveryComplete is the event that appears in
the history to indicate that the recovery is complete.

Winners is the set of transactions that had committed before the crash. The recovery
algorithm ensures that their updates will be reinstalled. Losers is all the other transactions
that were active but had not committed, or had aborted, before the crash. Their updates must
be undone.

In the rest of this section, we present the forward pass of ARIES/RH, we establish the state
after that pass and, we describe the backward pass.

3.6.1 Forward Pass

ARIES starts with a forward pass that finds out which transactions were active, and which
committed before the crash (analysis). Committed transactions are Winners; active but un-
committed, or aborted transactions are Losers. ARIES also uses the forward pass to redo logged
updates. At the end of this pass the Object Lists are up to date, including the s of the updates.

Before the first pass of recovery starts, Winners = Losers = ¢. For brevity we omit some
details already explained for the normal processing. We describe the treatment of the log records
matter relevant to delegation in ARIES. Other records are processed as usual.

e begin(t)
1. INITIALIZE. Add t to T'r_List; create Ob_List(t).

2. LOSER BY DEFAULT. Consider ¢ a loser by default.
Losers < Losers U {t}.

e updatelt, ob]
1. ADJUST scoPES. This is done just as update (1) in normal processing.
2. REDO. Redo updatelt, ob].

e delegate(ty,t,, 0b)
1. TRANSFER RESPONSIBILITY. This is done just as delegate (3) in normal processing.

e commit(t) t committed and thus is a winner.
1. coMMIT. Declare t committed. Notice that ¢’s updates were redone during this forward pass.

2. WINNER. Declare ¢t as a winner.
Winners < Winners U {t}; Losers <— Losers —{t}.

After the Forward Pass we have updated the following.

e (Ob_Lists are restored to their state before the crash, for all transactions.

e Winners has all the transactions whose updates must survive (i.e., which had committed before
the crash). Losers has those whose updates must be obliterated.

15

e LsrObsincludes all objects in the Ob_Lists of loser transactions. We compute it after the forward

pass ends, as LsrObs = U Ob_List(t).

tcLosers

3.6.2 Backward Pass

ARIES undoes exactly all the updates nvoked by the loser transactions. It follows the back-
ward chains (of records for each transaction) for each of the loser transactions, undoing all their
updates. ARIES continually takes the maximum Log Sequence Number (LSN) for an outstand-
ing undo, ensuring monotonically decreasing (by LSN) accesses to the log, with the attendant
efficiencies.

This approach is not possible in the presence of delegation. What we need to achieve is the
undo not of all the updates invoked by a loser transaction, but instead of all the updates that
were ultimately delegated to a loser transaction. Thus, the analogy to ARIES would be to have
backward chains linking those updates, but constructing and maintaining them is complicated
and expensive. One could scan all log records backwards, identifying the loser updates (to be
undone), which are the updates whose responsible transaction is a loser. This is undesirable as

it entails unnecessarily inspecting many winner updates.

Fortunately, the necessary information to undo loser updates efficiently is in the object lists
of the loser transactions: the update scopes used for delegation. In the rest of the section we
discuss how undo and delegation are integrated in the backward pass of ARIES/RH. The only
records that require special processing are update and delegation; all others are processed as in

ARIES.

Notice that by undoing the loser updates instead of the updates invoked by loser transactions,
we are in fact applying the delegations, as we undo according to the fate of the final delegatee
of each update.? As in ARIES, for each undone update we write a Compensation Log Record
(CLR), to avoid undoing an update repeatedly should crashes occur during recovery.

Recall that scopes keep track of updates whose fate is the same (i.e., that were delegated
together). It is enough to inspect records within the loser scopes to find all loser updates. To
do this efficiently, we introduce the notion of cluster of scopes. Scopes may overlap; a cluster of
scopes is a maximal set of overlapping scopes. (We only care about “loser” clusters of scopes,
so we omit “loser” from now on.) Within each cluster we must examine every log record,
but between clusters we examine none. For instance, in figure 7 there are three clusters; the
middle one contains four overlapping loser scopes. (In figure 7 loser scopes are depicted in dark
shades). The last cluster has already been processed, and we are processing the middle cluster
(K indicates the current log record). The current cluster begins at begCluster; the first (i.e., to
be processed last) cluster in the log begins at begLsrScopes.

°In ARIES, all loser updates are those invoked by loser transactions, so ARIES/RH reduces to ARIES when

there is no delegation.

16

begCluster
begLsrScopes

D no loser scopes current cluster already done

. . . loser scopes

backward sweep

Figure 7: Loser scope clusters in a the log

We can now outline the algorithm for the backward pass of ARIES/RH (see also figure 8).

The idea is to examine each loser cluster, skipping all other records. Within a cluster we
examine all records, undoing loser updates. We also adjust the current cluster by adding or
deleting scopes, closing the cluster when we reach its first record, at begCluster. The algorithm
ends when we reach the beginning of the first cluster, at begLsrScopes.

We begin by computing the set LsrScopes, which contains all the scopes for which loser
transactions are responsible. We compute begLsrScopes which marks the beginning of the
leftmost (oldest) loser scope in the log. We start sweeping the log backwards (i.e., right-to-left
in the figure 7) at the end of the rightmost loser scope, and end at begLsrScopes (see while
loop!?). This sweep consists of two steps: we identify a cluster and undo all the loser updates
in its component scopes (a); and we move to the next cluster once the current one is exhausted

(8)-

We process a cluster (a) in four steps. First, we check whether the current record is the
right end of a scope, in which case we add the scope to the current cluster (al). Then we check
if the record is a loser update, and if so we undo it (a2). Specifically, a record is a loser update
if it is within the ends of a loser scope whose invoking transaction is the same as the update’s
invoking transaction. Then we check if a scope ended in the record just processed, in which case
we remove it from the current cluster, because the scope has already been treated (a3). Finally
we move K (left) to the next record (ad4).

Since when we add a scope to the current cluster Cluster (al) we remove it from LsrScopes,
(B) finds the next cluster by looking at the remaining scopes in LsrScopes and finding the
rightmost end.

The repeat loop ends because we decrement K by at least one on each iteration, and although

(a)’s limit begCluster may decrease, it may never go below begLsrScopes (because begLsrScopes
is the minimum of scope begins), so eventually K reaches it. The while loop ends because we

10This and the following references in parentheses are to figure 8.

17

LsrScopes < { scope | Job, 3t € Losers : scope € Ob_List(t)[ob].Scopes} all loser scopes
if LsrScopes # ¢ then

begLsrScopes < min { left | (., left,) € LsrScopes } start of earliest scope

K <« max { right | (-, -, right) € LsrScopes } end of latest scope

Cluster < ¢ ; begCluster <+ K

while beglsrScopes < K K sweeps log backwards to left end of earliest loser scope
() repeat identify and process cluster of overlapping slopes

add to Cluster the loser scope that ends in K
(1) if 3 (, left, K) € LsrScopes then

Cluster < Cluster U {(_, left, K)} put in Cluster
LsrScopes < LsrScopes — {(_, left, K)} and remove from LsrScopes
begCluster < min (left, begCluster) updating where cluster starts

undo if it 1s loser update
(2) if LOG[K] = updatelt,ob] and 7 (t,.,-) € Cluster then
undo(update(t, ob])
CLR.PrevLSN «+ LOG[K].PrevLSN and other undo information . ..
discard scope that begins at new record LOG[K]
(3) if 3 (, left,) € Cluster and K = left then already processed,
Cluster « Cluster — {(_, left,)} so discard

processed record LOG[K], next (left) ...
(4) K+ K -1

(end &) until K < begCluster finished this cluster (sweep backwards)

find next cluster of scopes

(8) K + max { right | (-, -, right) € LsrScopes}

RecoveryComplete

Figure 8: Backward pass of ARIES/RH

18

decrement K by at least one each time (a) (and more when we skip between clusters (3)).

Notice that we visit each log record at most once and in a monotonically decreasing way
(K gets decremented by at least one in each iteration of the while loop). This is important as
the log will be brought in from memory, and mimics ARIES’s strategy of continually taking the
largest LSN of the updates to be undone.

The set of scopes LsrScopes is constructed once and depleted in the reverse order of scopes,
so an efficient data structure is a priority queue (on a heap) sorted by right end of scopes, with
the largest value first. The set of scopes Cluster is searched by invoking transaction, gains scopes
to the left and loses scopes to the right. A binary tree keyed on transaction ids is a reasonable

implementation.

3.7 Implementing delegation in EOS

Rewriting History can be applied to other recovery algorithms, for instance, EOS [4], which uses
a NO-UNDO /REDO protocol. Next, we give an overview of EOS and then discuss briefly how to
apply RH to implement delegation.

To avoid having to undo changes in the database, EOS avoids applying those changes until
the transaction that made them is ready to commit. This is achieved by keeping a global log, in
which only transaction commits are recorded, and per-transaction private logs. If a transaction
commits, its private log is flushed to stable storage; if it aborts, the private log is discarded. The
recovery of EOS is simpler than that of ARIES, because no undo is necessary; only committed
changes are logged, so they are reapplied during a single forward sweep of the global log (that
in turn brings in the private logs of committed transactions).

We can support delegation within EOS by applying an algorithm very similar to ARIES/RH
for the normal processing and the forward pass of the recovery. The differences are due to
the private logs kept by EOS. “Rewriting History” must now be implemented across different
private logs. When two transactions do concurrent (but non-conflicting) updates on an object,
and one delegates its operations to the other, the net effect should be as if the delegatee had
executed all the operations in the original order. In EOS the transactions keep separate logs, so
reconstructing that order is not straightforward. This situation does not arise when we restrict
the operations to reads and writes, because in this case, all updates are translated to write
operations and so even compatible update operations execute in isolation. In the read/write
case, then, it i1s enough for the delegator to supply the delegatee with an image of the current
state of the object at the time of the delegation. This image is stored as part of the delegate
record.

Supporting delegation in EOS entails logging the delegation both at the delegator and the
delegatee. The delegator filters out updates it has delegated when it comes time to commit, to
avold committing updates it no longer is responsible for. If it aborts, its private log is discarded,

19

but the delegated updates are preserved in the log of the delegatee. When the delegatee commits,
it has the updates it has received through delegation preserved in the delegatee record, so it
does not need to rely on the delegator (which may not be around any more). If the delegatee
aborts, the updates it received in delegation will not be applied (delegatee’s log is discarded,
delegator’s is either discarded or filtered).

Recovery is simple, because we only need to redo the winner updates. Loser transactions
have their private logs discarded, and winner transactions have their private logs redone. This
takes care of the undelegated updates. For delegated updates, first we see that they get redone
if they were winner updates (i.e., their Responsible Transaction at crash time was a winner,
that is, had committed). Regardless of the fate of the invoking transaction (and any intervening
delegating transactions) the winner update was delegated to the winner transaction last. Thus
when redoing the winner transaction’s log, we restore the state of the object from the delegation
record in the winner’s private log. Notice that there is no possibility for this ever being undone
because no updates are ever undone.

If an update was in a loser transaction, it will not be redone because the loser transaction’s
private log is discarded. It also does not get redone by other transactions for the following
reason. If the invoking transaction is a winner, it must have delegated the update (for it to be a
loser now). When a transaction delegates an update it filters it out when saving its private log,
so that update will not be there when the private log is redone. This applies to any transaction
that was at some point responsible for the update and delegated it. Thus the loser updates do
not get redone.

4 Discussion

In this section we discuss two issues with regard to the implementation of the recovery algorithm.
First we analyze aspects of the algorithm presented in section 3 to show that it implements
delegation correctly. In the second part, we examine the implementation and argue that it is
efficient.

4.1 Correctness

To ensure correctness in a recovery protocol, we must guarantee that, after recovery, all op-
erations by loser transactions have been rolled back completely (their effects obliterated) and
all by winner transactions have been committed (their effects guaranteed to be permanent).
Conventional ARIES complies with this by using the UNDO/REDO protocol (EOS does NO-
UNDO/REDO). We show in this section that ARIES/RH, that is, ARIES with our modifications
complies with this requirement when it is rephrased to include delegation. That is, operations
delegated to loser transactions will be aborted, and operations delegated to winner transactions

20

will be committed. Naturally, boring operations (i.e., never delegated), are treated as in the
conventional case, because in the absence of delegation ARIES/RH reduces to ARIES.

After the event Crash, we initiate recovery, which ends with the event RecoveryComplete.
Between Crash and RecoveryComplete all events are generated by the recovery system. For
simplicity, we ignore checkpoints and assume that the system restarts from the beginning.

A brief recapitulation of the algorithm is in order. The forward pass reads but does not write
anything to the log. It redoes the updates present in the log, and constructs the sets Winners of
transactions whose updates will survive after the recovery. It also records the Losers, i.e., active
transactions that did not commit before the crash. ARIES/RH also computes LsrObs after the
forward pass. The backward pass reads the log, interpreting it according to the delegations, and
undoes updates on loser objects.

In the remainder of this section, we characterize loser and winner transactions and their
associated updates, we explain the idea of delegation chain, and formalize the correctness prop-
erties. Then we show the correctness of the algorithm, to wit, that all loser updates get undone
and all winner updates get redone.

Winners, Losers, LsrObs.

o t € Winners < (Commit(t) — Crash)
t is a winner if it committed before the crash.

e ¢ € Losers < (Begin(t) — Crash A ACommit(t) € H)
t is a loser if it was active but did not commit before the crash.

Losers: an active transaction is by default a loser. If there is a commit record before the crash,
its transaction is moved to Winners. Note that these sets are disjoint, and that Losers includes
transactions that had aborted before the crash.

e LsrObs = U Ob_List(t) i.e., ob € LsrObs = 3t € Losers : ob € Ob_List(t)
tcLosers
LsrObs is the set of all objects for which there is a loser transaction that is responsible for an
update to that object. This means that a loser object has at least one update that will be undone.

Delegation Chain.

We assert that if ¢, is responsible for an update, either ¢,, invoked the update itself (n = 0)
or t, received it from ¢q through a sequence of delegations. Formally:

updatelty, ob] € Op_List(t,) = (I(n > 0),to,t1,, ..., tn_1, tn such that

that is, if ¢, is responsible for the update, then there is a sequence of transactions, starting with ,,
the invoking transaction, and ending with the responsible transaction ¢,, such that

[update[to, ob] — delegate(to,t1, 0b) — ... — delegate(t,_1,t,,0b)] A
[Ay such that delegate(t,_1,t,,0b) — delegate(t,,t,, ob) — Crash] A
[Ai (0 < i< mn), At, such that delegate(t;_;,t;, 0b) — delegate(t;, t,,0b) — delegate(t;, t; 11, 0b)]

21

to delegated the update to t;, and so on, until finally ¢, received it in the last delegation; and for each
t;, t;11 is the first transaction to which ¢; delegates ob, i.e., there is no other intervening delegate (to,
say, transaction t,) of that update.

We prove that if ¢,, is responsible for an update, there is a sequence of delegations that links
the original update log record to ¢, by induction on n. The base case, for n = 1, is immediate
from the algorithm that applies delegation during normal processing and the forward pass of
recovery.!! Specifically, when a transaction invokes an update, it creates or enlarges its current
scope to include it (see delegate in 3.5). Each time a delegation is invoked, the scope of the
delegated object, which includes the delegator’s updates, is passed to the delegatee (see delegate
in 3.5). The scope defines uniquely the updates being delegated (see Ob_List in 3.4 and the
remark in 3.5).

For the inductive case, note that a delegated scope is never modified by the delegatee. For a
given object, a delegatee either keeps the scope(s) it received in the delegation, or it augments
them with its own scope for its updates on the object. Thus in a delegate(ts, tr+1,0b), the scopes
that ¢xy1 keeps for the object ob are Ob_List(t)[ob].Scopes U the scope i1 has on ob. Thus
an update contained in #;’s scope for ob will be in t4;’s.

Correctness Properties

Here we state the properties of undo and redo that describe correct recovery.

undo (Vt € Losers Vupdate[t,, ob] € Op_List(t))(Undo(update[ty, 0b]) — RecoveryComplete)
All updates ultimately delegated to a loser transaction are undone before the recovery ends.

redo (Vt € Winners, Vupdate[ty, 0b] € Op_List(t))(Redo(update[ty, 0b]) — RecoveryComplete)
All updates ultimately delegated to a winner transaction are redone before the recovery is finished.

In other words, updates whose responsible transaction did not commit before the crash are
undone (obliterated), and updates whose responsible transaction committed before the crash
are redone (made permanent). In the following paragraphs we discuss how the implementation
satisfies the requirements.

Correctness of ARIES/RH

For the correctness of the normal processing, notice that the scope information on the Ob_List
associated with each transaction is sufficient to decide whether to commit or abort a specific
update in the absence of crashes. Then notice that the updates covered by scopes in the Ob_List
of a loser transaction are aborted, and those in the Ob_List of a winner are committed. This is
easy to see by inspection of the algorithm, specifically, the update, commit, and abort cases in

3.5.

For the recovery, we first show that undo holds, that is, that all loser updates are undone.
An update is a loser if ResponsibleTr(update[ty,o0b]) =t and t € Losers. (We already know

1For n = 0, reduces to no delegation and holds trivially: it is the boring update case.

22

that there must be a delegation chain from ¢o to t.) This means that there is a scope (to,l,7) €
Ob_List(t)[ob].Scopes, and alog sequence number q, I < q < 7 such that LOG[q] = updatelto, ob],
by the definitions of scope, loser update, and responsible transaction. Then by the construction
of LsrScopes in the algorithm (figure 8), (¢o,{,7) € LsrScopes. Let us show that the record for
the update will be eventually checked and undone. Initially (¢o,1,7) € LsrObs, | < initial value
of K, and begLsrScopes < r, by construction. Because K starts at the maximum value and
goes down by one, or jumps to the next right end of a scope, it will eventually reach » and put
(to,!,7) in Cluster. When K reaches q, it is within the scope and the update is undone.

We prove the redo property by contradiction. Recall that all updates are redone in the
forward pass. We show that no winner update gets undone. We proceed by contradiction; we
suppose that a winner update is erroneously undone in the backward pass. If the update was
undone, it means that it appeared in some loser scope (see figure 8). But, because the delegation
chain applies here too (it does not depend on the fate of the final transaction), this means that
there is a chain of delegations that starts with the invoking transaction of the update and ends
with a loser transaction. But that means that the responsible transaction of the update was a
loser, contradicting that it was a winner update. Q.E.D.

4.2 Efficiency

We claim that ARIES/RH is efficient in the following senses:

e No delegation, no overhead. In the absence of delegation ARIES/RH reduces to the original
algorithm, so no penalty is incurred due to the extra functionality when it is not used.

e Normal processing: low overhead. Posting one delegation during normal processing has the
cost of adding a log entry and updating the object bindings. The cost of delegations is linear in
the number of operations delegated. For instance, the updating of Object Lists for a delegation
is linear in the length of the Ob_Lists.

e Recovery: low overhead. The costs of the recovery passes are similar to those of conventional
ARIES; ARIES/RH does not add any extra passes. For all operations, supporting delegation
only entails costs at most linear in the number of delegated operations (see previous item). Also,
recovery costs are dominated by disk log accesses, which ARIES/RH does as efficiently as ARIES.
For instance, on the backward pass, log records are visited at most once and in strict decreasing
order, as in ARIES, allowing for the usual optimizations.

The first two points follow from the fact that ARIES/RH only adds some fields to data
structures that are already updated by the conventional algorithm. When there is no delegation,
these fields are just left undefined. Delegating adds the constant time of logging the delegation
operation and updating the Ob_Lists of the delegator and delegatee transactions by moving
as many scopes as objects are delegated (hence the linearity). This entails lookup/updates
to the transactions’ Ob_List, which resides in main memory and can be organized for efficient
lookup/update. At transaction termination the Ob_List can be simply discarded.

23

As for recovery, ARIES/RH’s forward pass incurs the same overhead as ARIES does to
reconstruct transactional data structures and redo updates. Again, the only additional infor-
mation that is collected is piggy-backed in those data structures. No special sweep of the log
is required: ARIES/RH obtains its information during the same accesses as the conventional
algorithm. Specifically, the forward pass of recovery is only different from that of ARIES in its
processing of update (there is an extra check for ob € Ob_List(t)) and delegate (same check and
the move from one Ob_List to the other). Thus, ARIES/RH adds neither extra log sweeps, nor
costs proportional to the length of the log, as it uses the same sweeps of the log as ARIES to
reconstruct the delegation information.

We expect the Ob_List to be much smaller than the log being analyzed, and to wholly reside
in main memory. Thus the cost of accessing Ob_List is small compared to bringing the log from

stable storage, the dominant cost during recovery.

The backward pass of recovery reads the log in much the same way as ARIES, by continually
taking the maximum Log Sequence Number that must be undone (in ARIES) or the scope
clusters within which updates must be undone (in ARIES/RH). In ARIES/RH we examine
log records in clusters formed by loser scopes, but, as in ARIES, we do it in a monotonically
decreasing way. To compare with ARIES, we need only examine the costs for processing update
records (the rest are just as in ARIES). For each update, we do a lookup in Cluster for a check
of delegation scope (to decide whether to undo it), and possibly write a Compensation Log
Record. Otherwise, we just add or remove scopes from the Cluster and the LsrScopes sets.

In summary, the ARIES/RH algorithm adds only minimal overhead to support delegation.

5 Related Work

We have benefited from insights gained in an effort with goals closer to ours: the work at
GTE Labs on Transaction Specification and Management Environment (TSME, [9]). The ar-
chitecture of TSME consists of a Transaction Specification Facility that understands TSME’s
transaction specification language, and drives the Transaction Management Mechanism which
configures the run-time system to support a specific Extended Transaction Model. The Transac-
tion Management Mechanism is programmable, but uses templates to describe existing extended
transaction models, and also to drive the incorporation of only the components necessary for
a given Extended Transaction Model. It is a toolkit approach, in which certain expressions in
the specification language are mapped to certain configurations of pre-built components, so it
approaches the problem at a coarser grain. This may allow for initial gains in performance, but
we believe that the use of language primitives is a richer and more flexible approach.

The recent work of Barga and Pu [1], also inspired in part by ACTA, explores another
modular approach, based on the ideas of metaobject protocols [13], and incorporates some
elements of the TSME approach and some of our language-based approach.

24

Also related is the work on the ConTract model [20]. In ConTract, a set of steps define
individual transactions; a script is provided to control the execution of these transactions. But
ConTract scripts introduce their own control flow syntax, while ASSET introduces a small set
of transaction management primitives that can be embedded in a host language.

Other related work also includes Structured Transaction Definition Language [3], a persistent
programming language geared to portability and the integration of legacy applications. Its em-
phasis, however, is in Application Programming Interfaces conforming to existing conventional
transactional technology.

Finally, the idea of rewriting history is a natural extension of the repeating history paradigm
of ARIES [14] and is a generalization of ARIES/NT [19], an extension to ARIES for nested

transactions [15].

6 Conclusions

Recent work has produced many Extended Transaction Models (ETMs), but each has its own
tailor-made implementation. With delegation (and the other two ASSET primitives, permit and
form-dependency [5]) we believe we can offer the flexibility to synthesize a wide range of ETMs
at a performance comparable to that of tailor-made implementations. Delegation, by allowing
changes in the visibility and recovery properties of transactions, is a very useful primitive for
synthesizing Extended Transaction Models. Our work builds on the formal foundation provided

by ACTA [6, 7, 8], and the primitives introduced in ASSET [5].

The main contribution of this paper is the concept of rewriting history (RH), designed to
achieve the semantics of delegation in an efficient and robust manner. We believe that this work
forms a crucial step towards the flexible synthesis of ETMs:

e By casting delegation in terms of rewriting history, we were able to express the issues of
delegation in terms amenable to the specification of a recovery algorithm.

e We showed how to achieve RH in the context of a practical system (ARIES), and sketched
how to apply it to another (EOS), suggesting the practical implementability of delegation.
As indicated in section 4, the cost of delegation in ARIES/RH is very low, and its support
incurs no cost at all when delegation is not being used.

o We have also demonstrated the correctness of our implementation, showing that it satisfies
the desired transaction properties in the presence of delegation.

We are currently implementing RH within EOS. We will continue investigating the broader
issues of providing robust, efficient, and flexible transaction processing. In particular, we are
interested in making recovery a first-class concept within transaction management and in pro-

25

viding a variety of recovery primitives to a transaction programmer so that different recovery

requirements and recovery semantics can be achieved flexibly.

Acknowledgments. We thank Lory Molesky, Jagan Peri, and Jayavel Shanmugasundaram

for valuable discussions. We also thank Mohan Kamath and Amer Diwan, whose comments

helped make this paper more readable.

References

[1]

Roger S. Barga and Calton Pu. A Practical and Modular Implementation of Extended Transaction
Models. In Proceedings of the 21st International Conference on Very Large Data Bases, September
1995.

Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control and Recovery
in Database Systems. Addison Wesley, Reading, Mass. 1987.

Philip A. Bernstein, Per O. Gyllstrom, and Tom Wimberg. STDL — A Portable Language for Trans-
action Processing. In Proceedings of the 19th International Conference on Very Large Databases,
pages 218-229, Dublin, 1993.

A. Biliris, E. Panagos. EOS User’s Guide. AT&T Bell Labs Report, May 1993.

A. Biliris, S. Dar, N. Gehani, H. V. Jagadish, K. Ramamritham. ASSET: A System for Sup-
porting Extended Transactions. In Proceedings of the ACM SIGMOD International Conference on
Management of Data , Minneapolis, Minn., June 1994.

P. K. Chrysantis and Krithi Ramamritham. Synthesis of Extended Transaction Models using
ACTA. ACM Trans. on Database Systems, September 1994.

P. K. Chrysanthis. ACTA, A Framework for Modeling and Reasoning about FExtended Transac-
tions. Computer Science TR 91-90. PhD thesis, Department of Computer and Information Science,
University of Massachusetts, Amherst, Mass., September 1991.

P. K. Chrysantis, and Krithi Ramamritham. Delegation in ACTA as a Means to Control Sharing
in Extended Transactions. IEEE Data Engineering, 16(2): 16-19, June 1993.

D. Georgakopoulos, M. Hornick, P. Krychniak, and F. Manola. Specification and Management
of Extended Transactions in a Programmable Transaction Environment. In Proceedings of 10th
International Conference on Data Engineering, Houston, Tex., February 1994.

[10] A. K. Elmagarmid, editor, Database Transaction Models for Advanced Applications. Morgan

Kaufman, 1991.

[11] Narain Gehani, Krithi Ramamritham, Oded Shmueli. Accessing Extra Database Information:

Concurrency Control and Correctness. Computer Science TR 93-081, University of Massachusetts,
Ambherst, 1993.

26

[12] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufman, San José, Calif. 1993.

[13] Gregor Kiczales, Jim des Riviéres, Daniel G. Bobrow. The Art of the Metaobject Protocol. MIT
Press, Cambridge, Mass., 1991.

[14] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, P. Schwartz. ARIES: A Transaction Recovery
Method Supporting Fine-Granularity Locking and Partial Rollbacks Using Write-Ahead Logging.
In ACM TODS, 17(1):94-162, 1992.

[15] J. Eliot B. Moss. Nested Transactions: An approach to reliable distributed computing. PhD thesis,
Massachusetts Institute of Technology, Cambridge, Mass., April 1981.

[16] C. Pu, G. Kaiser, G., and N. Hutchinson. Split-Transactions for Open-Ended Activities. In
Proceedings of the 14th International Conference on Very Large Data Bases, pages 26-37, Los
Angeles, CA, Sept. 1988.

[17] Cris Pedregal Martin and Krithi Ramamritham. ARIES/RH: Robust Support for Delegation by
Rewriting History. TR 95-51 Computer Science Dept., University of Massachusetts, Amherst, June
1995.

[18] Cris Pedregal Martin and Krithi Ramamritham. Delegation: Efficiently Rewriting History. TR
95-90 Computer Science Dept., University of Massachusetts, Amherst, October 1995.

[19] Rothermel, K., and C. Mohan. ARIES/NT: A Recovery Method Based on Write-Ahead Logging for
Nested Transactions. In Proceedings of the 15th International Conference on Very Large Databases,
pages 337-346, Amsterdam, 1989.

[20] H. Wachter and A. Reuter. The ConTract Model. In [10].

[21] Gerhard Weikum, Christof Hasse, Peter Broessler, Peter Muth. Multi-Level Recovery. In ACM
International Symposium on Principles of Database Systems, pages 109-123, Nashville, 1990.

27

