
ARIES�RH� Robust Support for Delegation by

Rewriting History y

Univ� of Massachussets Computer Science Technical Report �����
June �� ����

Cris Pedregal Martin and Krithi Ramamritham
Department of Computer Science

University of Massachusetts
Amherst� Mass� ����	
����
fcris�krithig�cs�umass�edu

Abstract

The notion of transaction delegation� as introduced in ACTA� has been shown
to be useful in synthesizing Extended Transaction Models� Delegation allows a
transaction to transfer responsibility over an object� and its operations� to another
transaction� Delegation can be used to broaden the visibility of the delegatee�
and to tailor the recovery properties of a transaction model� The broadening
of visibility is useful in allowing a delegator to selectively make tentative and
partial results� as well as hints such as coordination information� accessible to
other transactions� The control of the recovery makes it possible to decouple the
fate of an update from that of the transaction that made the updates
 for instance�
a transaction may delegate some operations that will remain uncommitted but
valid after the delegator transaction aborted�

In this paper� we show how to implement delegation in the context of ARIES�
a robust recovery algorithm for industrial�strength transaction management sys�
tems� The resulting version of ARIES is called ARIES�RH since delegation is
tantamount to Rewriting History� The modi�cations to ARIES are non trivial
but small enough to e�ciently support delegation� Although a na��ve implementa�
tion of delegation would entail frequent and costly log accesses� our careful design
has minimal cost during normal processing and involves only constant�time oper�
ations� and some stable storage access overhead� during recovery�

With our implementation of delegation� we suggest it is feasible to build e�cient�
robust� industrial�quality general�purpose machinery for Extended Transaction
Models�

Keywords� Extended Transaction Models� Transaction Management� Recovery�

y Supported in part by Sun Microsystems and by the National Science Foundation under grant IRI � ��������



Contents

� Introduction �

� Delegation� Concepts� Examples� and Properties �

� An Operational Semantics of Delegation �
	�� Delegation as Manipulation of the Log � � � � � � � � � � � � � � � � � � � � � � � �
	�� Delegation in terms of ARIES � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� Implementation� Rewriting History E�ciently �
��� Data Structures � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Normal Processing � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��	 Recovery Processing � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��	�� Forward Pass � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��	�� Backward Pass � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

	 Discussion ��
��� ARIES�RH Implements Delegation � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� ARIES�RH is E�cient � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

� Conclusions ��



� Introduction

The transaction model adopted in traditional database systems has proven inadequate for novel

applications of growing importance� such as those that involve reactive �endless�� open�ended

�long�lived�� and collaborative �interactive� activities� Various Extended Transaction Models

�ETMs� have been proposed ���� each custom built for the application it addresses
 alas� no one

extension is of universal applicability�

Currently� each Extended Transaction Model is in�exible� if one�s application deviates from

the semantics foreseen by the designer of the Extended Transaction Models available� one is

forced to adapt the application to the transaction system� or to build from scratch a system

that supplies the needed functionality� To address this problem� we investigate how to create

general�purpose� industrial�quality machinery to support the speci�cation and implementation

of diverse Extended Transaction Models� Our strategy is to work from �rst principles� �rst

identifying the basic elements that give rise to di�erent models� then proposing mechanisms

for implementing these elements� and showing how to specify and implement various Extended

Transaction Models�

A �rst step was ACTA �	�� that identi�ed� in a formal framework� the essential compo�

nents of Extended Transaction Models� In more operational terms� ASSET ��� provided a set

of new language primitives that enable the implementation of various Extended Transaction

Models in an object�oriented database setting� In addition to the standard primitives Initiate

�to initialize a transaction�� Begin� Abort� and Commit� ASSET provides three new primitives�

form�dependency� to establish structure�related inter�transaction dependencies� permit to allow

for data sharing without forming inter�transaction dependencies� and delegate� which allows a

transaction to transfer responsibility for an operation to another transaction�

Traditionally� the transaction invoking an operation is also responsible for committing or

aborting that operation� Delegation separates these two concerns� so that the invoker of the

operation and the transaction that commits �or aborts� the operation may be di�erent� In

e�ect� to delegate is to rewrite history� because a delegation makes it appear as if the delegatee

transaction had been responsible for the delegated object all along� and the delegator had nothing

to do with it�

Delegation is useful in synthesizing Extended Transaction Models because it broadens the vis�

ibility of the delegatee� and because it controls the recovery properties of the transaction model�

The broadening of visibility is useful in allowing a delegator to selectively make tentative and

partial results� as well as hints such as coordination information� accessible to other transactions�

The control of the recovery makes it possible to decouple the fate of an update from that of the

transaction that made the updates
 for instance� a transaction may delegate some operations

that will remain uncommitted but alive after the delegator transaction aborted� Examples of

Extended Transaction Models that can be synthesized using delegate are Joint Transactions�

Nested Transactions� Split Transactions� Open Nested �see �	� ����

�



Gehani et al� ��� describe how to implement some ASSET primitives� Brie�y� permit is

done by suitably adding the permittee transaction to the object�s access descriptor� Form�

dependency is done by adding edges to the dependency graph� after checking for certain cycles�

Whereas the realization of permit and form�dependency are rather straight�forward� that of

delegate is not� For instance� close attention must be paid to logging and recovery issues in the

presence of delegation� To further the goal of providing general purpose machinery to support

the speci�cation and implementation of arbitrary Extended Transaction Models� we propose

here an e�cient implementation of delegation based on ARIES ����� Our basic additions to

ARIES allow the �rewriting of history�� We hence call it ARIES�RH�

In ARIES�RH we implement delegate as described in ASSET ���� i�e�� a transaction delegates

all of an object�s operations� �Implementing per�operation delegation is very similar��

By providing delegation� we add substantial semantic power to a conventional Transaction

Management System �TMS�� allowing it to model various Extended Transaction Models� How�

ever� we achieve this expressiveness with only small modi�cations to the original ARIES� by

carefully �piggy�backing� the delegation�related processing onto ARIES�s routine processing�

This is especially important during recovery� where our algorithm avoids adding costly extra

sweeps to the log�

In this paper we argue that�

� Delegation is a powerful� essential primitive for realizing Extended Transaction Models�

We explain its semantics and how it can be used to manipulate visibility and recovery

properties of transactions�

� It is possible to implement delegation in an industrial�strength transaction management

system� We present our algorithm in terms of extending a well�known� robust� e�cient

Transaction Management System� ARIES�

� The modi�cations to ARIES are non trivial but small enough to e�ciently support dele�

gation� The cost of delegation is minimal during normal processing� During recovery� we

incorporate our rewriting of the log to the usual work ARIES does on the log� adding only

constant�time operations� and some stable storage access overhead�

The remainder of the paper is organized as follows� In Section � we describe the properties

of delegation and show how it can be used to synthesize some well�known extended transaction

models� In Section 	 we explain delegation�s semantics in terms of rewriting history�

In Section � we develop our implementation of delegation in the context of a robust� industrial�

grade transaction management system� We discuss our modi�cation of existing data structures

and some additions� and then describe how we operate on the log to e�ect delegations� In Section

� we discuss why our algorithm correctly implements delegation and why it does it e�ciently�

In Section � we review related work� present our conclusions and discuss future work�

�



� Delegation� Concepts� Examples� and Properties

In this section we examine the properties of delegation and present some examples of extended

transaction models that can be realized using delegation�

First� some notation� t� ta� ���� t�� t	� ��� denote transactions
 ob� obdel� A�B� ��� denote objects�

Let ob be an object being accessed by a transaction t�� When t� executes delegate�t�� t	� ob�� we

say that t� transfers its responsibility over ob to transaction t	� We say that t� is responsible for

ob when t� is in charge of changes to ob� More precisely� Responsible�trans�ob� � t� holds from

the time when t� either �rst accesses ob� creates ob� or is delegated ob until the time when either

t� terminates or delegates ob� For instance� in some implementations responsibility may imply

that t� holds an exclusive lock for ob� See �	� for a formal de�nition of delegation�

Basically� in the presence of delegation the fate of updates to an object is not necessarily

linked to the transaction who made the updates� but instead it is linked to the fate of the

transaction to which the object was last delegated� For instance� if t� updates ob� then delegates

ob to t	� and t� subsequently aborts� the changes t� made to ob will still survive if t	 commits

while it is still responsible for ob�

Via nested transactions� let us illustrate a simple use of delegation� Inheritance in nested

transactions is an instance of delegation� Delegation from a child tc to its parent tp occurs when

tc commits� This is achieved through the delegation of all the operations of tc to tp when tc

commits� That is� all the operations that a child transaction is responsible for are delegated to

its parent when it commits�

A transaction can delegate at any point during its execution� not just when it aborts or

commits� For instance� in Split Transactions ����� a transaction may split into two transactions�

a splitting and a split transaction� at any point during its execution� A splitting transaction t�

may delegate to the split transaction t	 some of its operations at the time of the split� Thus� a

split transaction can a�ect objects in the database by committing and aborting the delegated

operations even without invoking any operation on them�

Other transaction models using delegation include Reporting Transactions and Co�Transactions

described in ��� ��� The former periodically reports to other transactions by delegating its cur�

rent results� In the latter� control is passed from one transaction to the another transaction at

the time of the delegation�

We conclude this section with some observations� Delegate�t�� t	� ob� is well formed when t�

and t	 are initiated and t� is responsible for ob� Delegate�t�� t�� ob� is a null operation�

Transactions may be aborted by the system to enforce some correctness or concurrency

control criterion or due to self�aborts� requested by the transaction� It is easy to see that

delegate operates as per its de�nition� as pointed out before� if t� executed delegate�t�� t	� ob�

and then aborted� the changes to ob are not undone� and ob�s fate is that of t	�

These properties extend to sets of objects by considering delegation of a set of objects as

	



the concurrent execution of the corresponding single�objects delegations� or an atomic sequence

of single�object delegations� in unspeci�ed order� It is also straight�forward to extend these

properties to per�operation delegation�

� An Operational Semantics of Delegation

We now discuss the semantics of delegation through an operational description in the context

of a Database Management System� First we present an abstract description and then we show

a more detailed� but na��ve� description in the context of ARIES�

��� Delegation as Manipulation of the Log

In a DBMS the log is the system�s history� as it contains the records of all updates� transac�

tional operations� etc� The idea of delegation is to rewrite history� selectively altering the log�

Delegate�t�� t	� ob� can be visualized as iterating through the log into the past� modifying all

records pertaining to ob� so that each record of an access to ob by t� will now show that the

access was done by t	�

The log is a list held in stable storage� whose elements are identi�ed by monotonically

increasing values of the Log Sequence Number �LSN�
 via use of LSN we can view the log as an

array� During normal execution� the only valid operation is appending a log record to the end

of the log �with the corresponding increment of the current Log Sequence Number�� During

recovery� the log can be rolled back and replayed� by going to the LSN of the last checkpoint

and extracting� sequentially� the records from there on� We describe delegation in Figure � using

the following operations�

� prevLSN�startLSN� t�� which returns the Log Sequence Number of the previous �most

recent� log record written by t� �i�e�� before� or to the left of LSN��

� setTransID�LSN�t	�� which does log�LSN ��T ransID � t	� making the record appear as

if it had been written by the transaction t	�

Example
 Consider the log fragment �see also Figure ���

� � �update�t�� A�� update�t	�X�� update�t�� B�� update�t�� A�� update�t	� Y �

After the application of delegate�t�� t	� A�� we have�

� � �update�t	� A�� update�t	�X�� update�t�� B�� update�t	� A�� update�t	� Y �� delegate�t�� t	� A�

�



delegate�t�� t	� ob� is�

while currLSN is not the initiate record for t�
if currLSN is an update to ob

then setTransID�currLSN�t	�

currLSN � prevLSN�currLSN�t��

�currLSN is initially the Log Sequence Number of delegate record�

Figure �� semantics of delegation�

��� Delegation in terms of ARIES

Let us now consider delegation in terms of a speci�c recovery approach� namely� ARIES �����

To facilitate recovery� ARIES keeps� for each transaction� a Backward Chain �BWC� linking the

transaction�s records in the log� That is� all the log records pertaining to one transaction form

a linked list� beginning with the most recent one� By following the BWC� ARIES�s recovery

avoids repeating undos� as it can insert compensation log records to indicate how to undo an

action or whether to skip an already undone action� Using Backward Chains� and in view of

the semantics just presented� we could realize delegate�t�� t	� ob�� � as follows�

� locate all records in t��s Backward Chain that correspond to operations on ob

� move each of those records into the appropriate place in t	�s Backward Chain� renaming

them to be t	�s records�

Since each transaction�s log records are linked in a BWC� another way to put it is�

� remove the subchain of records of operations on ob from t��s BWC�� merging it with t	�s

BWC	�

Example
 Consider the log fragment �see also Figure ���

� � �update�t�� A�� update�t	�X�� update�t�� B�� update�t�� A�� update�t	� Y ��

delegate�t�� t	� A�� update�t�� B�� update�t	� A�

Initially the BWCs of the transactions are�

� � �update�t�� A��update�t�� B��update�t�� A��delegate�t�� t	� A��update�t�� B��� BWC�

� � �update�t	�X��update�t	� Y ��update�t	� A��� BWC	

After applying the delegation� the BWCs look like this�

� � �update�t�� B��delegate��t�� t	� A��update�t�� B��� BWC�

�



� � �update�t	� A��update�t	�X��update�t	� A��update�t	� Y ��update�t	� A��� BWC	

t1 t1t2 t2 t2t1 t2t2t1 t2 t1 t2

Update Update Update Update Update Update UpdateDelegate
B BX YAA AA

t1 t1 t1 t1t2 t2 t1 t2

Update Update Update Update Update Update UpdateDelegate
A B BX YA t2 AA

BWC1

BWC2

BWC1

BWC2

time

Figure �� log before and after applying delegation

To implement delegation in ARIES according to the na��ve algorithm� although correct� is

ine�cient� because the log is scanned every time a delegation is submitted� In the next section

we present an algorithm that has a very small cost during normal processing� and is e�cient

during recovery�

� Implementation� Rewriting History E�ciently

Our algorithm is lazy� it takes note of the individual delegations as they happen �when they are

submitted by transactions�� but only applies them later� when the log is scanned for recovery�

It is enough to apply the delegations to the log during recovery� During normal processing�

we can rely on volatile data structures to keep track of delegations� In this section we present

our algorithm ARIES�RH and its data structures�

��� Data Structures

In order to defer the application of delegation to recovery time� we must keep track of which

objects have been delegated to which transactions� and how each transaction�s records are linked

together in their Backward Chain �see 	����

The abstract operations prevLSN and setTransID �de�ned in 	��� suggest what information

we need to manipulate� For each delegated object we must keep track of its delegator transaction�

when it was delegated �see scope� below�� and to whom �the delegatee�� For each transaction�

�



we must know which objects it is responsible for �see ��� This information must be updated

according to the delegations� In the following� we present the data structures we use�

ARIES maintains a Transaction List TL that contains� for each Trans�ID� the Log Sequence

Number �i�e�� the address of a log record� for the last record for that transaction� Since each

record has a PrevLSN pointer� TL�t�� is the head of the BWC�� TL�t	� of BWC	� and so on�

Associated with each transaction there is an Object List OL that contains a list of the objects

that the transaction is currently responsible for �in some implementations OL may have pointers

to locks or other resource management devices�� We augment the Object List with a deleg �eld

for each object that indicates whether this object was acquired through a delegation and from

whom� Speci�cally� OL	�ob��deleg � t� if ob was delegated by t� to t	� or OL	�ob��deleg � t	 if

it was created or accessed originally by t	� See Figure 	�

We create and maintain a Delegated Objects Table �DOT�� For an object ob� DOT�ob�� t�

indicates that ob has been last delegated to t�� See Figure 	� Since the e�ects of updates on

ob are committed �respectively� discarded� when Responsible�trans�ob� commits �aborts�� DOT

supplements the conventional mechanisms that track the fate of updates� DOT also keeps track

of the scope of an object�s delegation� When an object is delegated� all previous uncommitted

updates to the object are relabeled as if they had been done by the delegatee� However� if a

transaction which is responsible for ob commits� its updates to ob cannot be delegated� Hence we

introduce the notion of scope of a delegation� it is the extent on the log to which the delegation

applies� and it is indicated by the Log Sequence Number of the last commit record that caused

the object�s updates to be committed� I�e�� the scope of a delegation is the minimum LSN to

which the delegation applies�

The Delegated Objects Table is kept in volatile storage and saved to stable storage when the

system writes a checkpoint�

t1

locks, 
etc.

t1A

B

Object List 1

trans IDobject
deleg by

t1

t2

t2

locks, 
etc.

X

Y

Object List 2

trans IDobject

A

deleg by

t2

trans ID
scope
LSNobject

A 1034

Delegated Objects Table

deleg to

Figure 	� data structures after applying example delegation

Note that although DOT�ob�� t� implies that transaction t� is responsible for ob� the reverse

�



does not hold� e�g� a transaction may have become responsible for an object by accessing it� so

DOT �strict Responsible�trans�

We also introduce a new log record type� delegate� Its �elds record the two transactions and

object�s� involved in the delegation� The �elds are� LSN �log�sequence number�� Type �delega�

tion�� Trans�ID �which transaction created the record� in this case the delegator�� PrevLSN �link

for the Backward Chain�� Page�ID� UndoNxtLSN �for recovery backward chain�� and Data �in

this type� Data contains the delegated object and delegatee Transaction ID�� For other record

types� we just note here that all update and transactional event log records have Trans�ID �eld�

Trans�ID indicates the name of the transaction whose action the record logs� This follows the

format of log records in ARIES� see ���� for details on other record types�

��� Normal Processing

For normal processing ARIES�RH augments ARIES in two ways� It logs delegations as trans�

actional operations� updating the Delegated Object Table� Also� it cleans up the Delegated

Objects Table and other data structures on transaction termination� Speci�cally� he processing

is as follows�

delegate When a transaction t� executes delegate�t�� t	� ob��

�� delegation well�formed� We search the Delegated Objects Table�

� If there is no entry for ob in Delegated Objects Table �the object had never been

delegated before�� the delegation is OK �well�formed��

� If ob � DOT� and DOT�ob�� t� �the transaction listed in Delegated Objects Table

matches the delegating transaction�� the delegation is OK�

� If ob � DOT but t� �� DOT�ob� �the delegating transaction does not match the

transaction listed in Delegated Objects Table�� the delegation is malformed �NOK�

so we ignore it�� ending the processing of the delegation�

�� apply delegation� If the previous step is OK�

�a� Write to the log a delegate record containing the delegating transaction id t�� the

delegatee�s id t	� and the object name ob� �This log record is linked into the delegating

transaction�s BWC���

�b� DOT�ob�� t	� i�e�� update DOT to re�ect the delegation �creating a new entry if ob

was not there already��

�A good implementation will issue a warning�

�



�c� Modify other data structures to re�ect the transfer of responsibilities� I�e�� transfer ob

from t��s to t	�s object list OL	� OL�ob��deleg � t� �marking ob as obtained through

delegation from t���

commit When a transaction commits� write a commit record to the log� Find� from the

transaction�s Object List� which objects were acquired through delegation� For each delegated

object obdel� delete its entry or adjust its scope as necessary �e�g�� DOT�obdel�� null��

abort Write an abort record to the log� Discard the changes to objects owned by the aborting

transaction� Find� from the transaction�s Object List� which objects were acquired through

delegation� For each delegated object obdel� delete its entry DOT�obdel�� Notice that any object

that had been delegated by the aborting transaction will no longer be in the transaction�s OL�

The other transactional events are processed as in ARIES �����

��� Recovery Processing

After a crash� the transaction system must do some recovery processing to return to a state

consistent with the correctness criteria� This entails restoring the state from a checkpoint

�retrieved from stable storage�� and using the log �also from stable storage� to reproduce the

events after the checkpoint was taken�

Since our recovery follows ARIES� we summarize it �from ����� brie�y here� ARIES scans the

log in one or two forward passes� analysis and redo
 and then a backward pass� undo� See Figure

�� The analysis pass starts at the last checkpoint� updates the information on active transactions

and dirty pages up to the end of the log� and also determines the �loser� transactions� to be

rolled back in the undo pass� The redo pass repeats history� writing to the database those

updates that had been posted to the log but not applied before the crash� This reestablishes the

state of the database at failure time� including uncommitted updates� Finally� the undo pass

rolls back all the updates by loser transactions in reverse chronological order starting with the

last record of the log�

In some ARIES variants the analysis and redo passes can be merged in a single forward pass�

ARIES�RH uses one forward pass and one backward pass only� so it does not add any passes to

ARIES� We describe next the additions to ARIES that allow ARIES�RH to support delegation

and recovery�

�
�
� Forward Pass

During the forward pass� ARIES�RH examines the delegate records in the log� updating Dele�

gated Objects Table accordingly� At the end of the forward pass� we know� for each delegated

�



Analysis

Redo All

Undo Losers

PASSES

Checkpoint Failure

LOG

Failure

Figure �� ARIES passes over the log

object� the relevant transactions that manipulated it
 i�e�� the last delegating and the last dele�

gatee transactions�

delegate Scanning the log� on �nding a record of delegate�t�� t	� ob�� we do�

�� lookup� We search for ob in Delegated Objects Table� If not found �the object had never

been delegated before�� we create an entry for ob in Delegated Objects Table� Otherwise

we have DOT�ob�� t��

�� reconstruct Delegated Objects Table� We set DOT�ob� � t	�

commit On encountering a commit�t� record� we scan t�s object list Object List and we

adjust scope for each delegated object in Delegated Objects Table� Notice that any subsequent

delegation of ob should not a�ect the log records preceding this commit� This is because a

transaction can only delegate uncommitted objects� and the same object may be used after it

has been committed by t� To avoid applying delegation to updates that have been committed�

we maintain and check the scope of the delegation� which is the Log Sequence Number of the

last transaction to commit this object� So adjusting scope consists of recording� on a per�object

basis� the LSN of the transaction that committed it� and it is done as part of the commit event�

On other types of records� the forward pass proceeds as in ARIES� At the end of this pass

Delegated Objects Table re�ects the delegations that had taken place up to the failure�

Notice that we do not alter the log in this pass�

�
�
� Backward Pass

In this section we discuss the delegation processing that is integrated with the undo pass of

ARIES� The only records that require extra processing are the updates
 all others are processed

by unmodi�ed ARIES�

��



During the backward pass we actually apply the delegations� as follows� For each delegated

object ob� we move each of its update records� from the Backward Chain of the transaction that

was responsible for ob at the last checkpoint to the BWC of the transaction that last received

ob in delegation� Note that this entails moving some Log Sequence Number pointers in the log

records concerning ob� not the log records themselves� We also change each update log record

so that its Trans�ID �eld now contains the transaction id of the last delegatee transaction� For

each changed update record we write a Compensation Log Record �CLR� to prepare for crashes

during recovery�

To process update records in the backward pass we need Delegated Objects Table to list

objects with pending delegations at the point of the failure� We use DOT to check if an update

is a�ected by some delegation and thus needs to be modi�ed� As pointed out above� DOT is

reconstructed in the forward pass of ARIES�RH recovery�

We also need TL to �nd the last record written by every transaction and initialize the BWCs�

TL is maintained by ARIES and reconstructed during the forward pass� As we process a record

for e�g� t�� we update BWC� to point to the predecessor of the record processed�

update Scanning backwards� on �nding� at LSN� a record for update�t�� ob� we do�

�� modify record� We search for ob in Delegated Objects Table� If ob � DOT� and

DOT�ob��scope � LSN �the record is within the scope of the delegation� this record must

be changed and we go to the next step� Else �ob � � DOT or LSN � DOT�ob��scope� we

are done with this record� and we exit�

�� rewrite record� We change the record�s Trans�ID to the delegatee transaction DOT�ob�

�say� t	�� I�e�� update�t�� ob��T ransID � DOT�ob�� which turns the current record into

update�t	� ob��

	� move record to new BWC� We move update�t	� ob� from BWC� to BWC	 �recall

DOT�ob�� t	�� We write the CLR for this update to the record� Now we are done with

this record�

In general� not all the log �ts into volatile memory� so the transaction system brings portions

of the log into a bu�er as needed� The �contiguous� portion of the log currently in the bu�er

is the bu�er window� and it is delimited by the Log Sequence Numbers of its two ends� To

move a record from BWC� to BWC	 we must change various pointers in both chains� These

pointers are the PrevLSN �eld part of various log records written by t� and t	� In the algorithm

presented above� we assume that all the necessary records are contained in bu�er window�

Because of locality� this is a reasonable assumption� but one can envision situations� such as

multiple successive delegations� or long�lived transactions� where some of the relevant records

are in a portion of the log outside the current bu�er window� Simply fetching the appropriate

��



individual records from disk is undesirable because it leads to short� scattered accesses with

high overhead� Long� contiguous accesses �like the ones that shift the window along the log� are

better because they spread out �xed access costs �such as latency� over many records�

In some cases� it is possible to bring in all the records needed by increasing the size of the

bu�er� and reading in the next portion of the log� which was to be examined next anyway�

In general� the solution is to defer those pointer changes whose records are currently outside

the bu�er� and apply them when their portion of the log is reached by the backward pass�

We accumulate the pointer changes in a priority queue �e�g� a heap� sorted by Log Sequence

Number� Each time the bu�er window is moved� we apply all the pointer changes for the

new range of LSN s� Unfortunately� this strategy is vulnerable to crashes� which may leave

inconsistent BWCs if some pointers are changed and others are left undone in the priority

queue� We see two possible ways of addressing this� One is to log the pending changes� so

that the priority queue can be reconstructed after a crash� but we must investigate how to

avoid nested recovery problems as using CLRs becomes more complex� The other solution is to

require that the chain move be atomic� We achieve this by keeping more than one contiguous

portion of the log in main memory� in e�ect using extra bu�er windows� and only logging a CLR

after all pointer switches have been done� This second solution imposes extra disk overhead due

to non�contiguous accesses� However� since we expect that locality will generally keep related

records close together in time and in the log� either strategy should not be needed frequently

enough to have a major e�ect on the performance of the system�

	 Discussion

In this section we discuss two issues on the implementation� First we analyze aspects of the

algorithm presented in �Section �� to argue that it implements delegation correctly� In the

second part� we look at the implementation from the point of view of e�ciency�

��� ARIES�RH Implements Delegation

Here we make some observations on why our algorithm correctly implements delegation� The al�

gorithm operates correctly during normal processing� i�e�� without considering failures� It is easy

to see that the supporting volatile data structures �Delegated Objects Table� per�transaction

Object List� are manipulated correctly by delegate� commit� and abort�

For the semantics in the face of crashes� we consider the forward and backward passes� The

forward pass reconstructs the supporting data structures from a checkpoint and the log� and

then it is as in normal processing� Notice that in the case of successive delegations of an object�

it is correct to only retain the last delegation and its scope� as we identify which update needs

to be modi�ed �in the backward pass� based on the object not the transaction involved�

��



The backward pass applies the changes indicated by a delegation� We retain ARIES�s use

of Compensation Log Records� for the case of crashes during recovery� We extend its use to the

case of modi�cation of the log 
when we move a record from one BWC to another
� and we

ensure that such modi�cations are done atomically� This ensures that delegation is implemented

correctly in the face of crashes�

��� ARIES�RH is E�cient

We claim that ARIES�RH is e�cient in the following senses� �i� When delegation is used its

overhead is proportional to how much it is used �i�e�� number of delegations�� No overhead is

incurred when delegation is not used� as the algorithm reduces to conventional ARIES� �ii� Dele�

gation�s overhead during normal processing is low� comparable to the overhead of e�g� posting an

update� �iii� During recovery� delegation�s overhead is generally low� as it amortizes its accesses

to the log by piggy�backing them whenever possible to the conventional ARIES log sweep� We

point out pathological recovery cases� which we expect will rarely occur
 further research is need

to evaluate this� �iv� Even in the case of costs e�g� proportional to the number of delegations�

they are not signi�cant if they entail e�g� a search on an in�memory table �such as Delegated

Objects Table� as compared to accesses to disk�

Let�s examine �i� and �ii�� It is easy to see that if delegation is not used� there is no

information to upkeep� Since ARIES keeps the Backward Chain anyway� we do not need to do

extra work to keep track of where the updates done by a speci�c transaction are� �ii� Every time

a delegation is invoked� there are two operations to consider for cost� A lookup�update to the

transaction�s Object List �proportional to the number of objects the transaction is responsible

for�� And a lookup�update on the Delegated Object Table� which can be optimized but is at

worst proportional to the number of delegations� Both OL and DOT are in main memory�

and we expect Object Lists will be short� and the Delegated Object Table will be implemented

for speed� At transaction termination we also have the added cost of removing a transaction�s

objects from Delegated Objects Table �or mark their scope�
 the Object List can be simply

discarded�

To see �iii�� �rst note that during recovery� the simpler algorithm �bu�ering issues ignored�

presented in the �rst part of ��	 is very e�cient� as it visits log records when ARIES brings

them to e�ect the recovery� In other words� the log manipulations necessary for delegation are

applied alongside with the other tasks of ARIES� analysis� redo� and undo� More speci�cally�

the forward pass of recovery is only di�erent to ARIES in its processing of commit and delegate�

For a commit record we have the additional work of recording the scope for each of the delegated

objects for which the committing transaction is responsible� This entails a lookup in Delegated

Object Table for each object in the transaction�s Object List� For a delegation we just make an

entry in the DOT to record the delegation� Most of the time both the Delegated Object Table

and the Object List are small
 in general they are much smaller than the log being analyzed�

�	



This is important because the dominant cost during recovery is bringing the log from stable

storage
 this supports �iv��

For the backward pass of recovery� we need only examine the cost for updates� For each

update� we do a lookup in Delegated Object Table� and check of scope� changes to the record

itself� changes to pointers �to move the record from one backward chain to the other�� and

writing a Compensation Log Record� There are two issues to consider here� One is disk access�

in contrast with ARIES� here we must schedule not just an append� but also write �the modi�ed

record� in the middle of the log� We expect to cluster those modi�cations to optimize access�

The other factor that can degrade performance severely is fragmented bu�er problem� dis�

cussed at the end of ��	��� We expect that locality of updates by the transactions will make

this an infrequent occurrence� but studies are needed to assess the e�ect of fragmented�bu�er�

as well as mid�log writes� on performance�

In summary� we expect that ARIES�RH will perform almost as well as ARIES during normal

processing and somewhat worse �depending on locality and certain disk access parameters�

during recovery� Although a slower recovery is undesirable� we believe it is a reasonable trade�

o� in exchange for good performance during normal processing�


 Conclusions

Delegation� by allowing changes in the visibility and recovery properties of transactions� is a very

useful primitive for synthesizing Extended Transaction Models� Our work builds on the formal

foundation provided by ACTA �	� �� ��� and the language primitives introduced in ASSET ����

which provides linguistic primitives to realize Extended Transaction Models�

The main contribution of this paper is ARIES�RH� an algorithm to implement delegation

in an e�cient� robust� industrial�grade transaction management system� This is a crucial step

towards the �exible synthesis of Extended Transaction Models� Current work has produced

many ETMs� but each with its own tailor�made implementation
 with delegation �and the other

two ASSET primitives� namely� permit and form�dependency� which are easy to implement ����

we believe we can now o�er performance comparable with ad�hoc implementations coupled with

great �exibility�

We introduced the novel concept of rewriting history� which provides the framework for an

e�cient implementation� and especially� a clear recovery model for transaction delegation� By

casting delegation in terms of rewriting history� we were able to express the issues of delegation

in terms amenable to the speci�cation of a recovery algorithm� Basing our algorithm on ARIES

allowed us to secure the bene�t of ARIES�s robustness and e�ciency� by modifying ARIES with

close attention to the performance and recovery issues�

Rewriting history is a natural extension of the repeating history paradigm of ARIES ����

and is a generalization of ARIES�NT ����� ARIES�NT is an extension to ARIES for nested

��



transactions �����

Delegation allows a transaction to manipulate a TMS data structure 
the log
 whose access

is traditionally restricted or denied altogether to the application level� A good discussion of the

issues of allowing transactions access to extra data is in ����

Related work includes Structured Transaction De�nition Language ���� a persistent program�

ming language geared to portability and the integration of legacy applications� Its emphasis�

however� is in Application Programming Interfaces conforming to existing conventional trans�

actional technology�

We have bene�ted from insights gained in an e�ort with goals closer to ours� the work at

GTE Labs on Transaction Speci�cation and Management Environment ���� The architecture

of TSME consists of a Transaction Speci�cation Facility that understands TSME�s transac�

tion speci�cation language� and drives the Transaction Management Mechanism which con�g�

ures the run�time system to support a certain Extended Transaction Model� The Transaction

Management Mechanism is programmable� but using templates to describe existing extended

transaction models� and also to drive the incorporation of only the components necessary for a

given Extended Transaction Model� It is a toolkit approach� in which certain expressions in the

speci�cation language are mapped to certain con�gurations or pre�built components� and so it

approaches the problem at a coarser grain� This may allow for initial gains in performance� but

we believe that language primitives is a more �exible approach�

Also related is work in the ConTract model ����� In ConTract� a set of steps de�ne individual

transactions
 a script is provided to control the execution of these transactions� But ConTract

scripts introduce their own control �ow syntax� while we introduce a small set of transaction

management primitives that can be embedded in a host language�

In further work we will model and evaluate the performance of ARIES�RH� and study the

broader issues for providing robust� e�cient� and �exible transaction processing�

References

��� Philip A� Bernstein� Per O� Gyllstrom� and Tom Wimberg� STDL 
 A Portable Language for

Transaction Processing� In Proceedings of the 	
th International Conference on Very Large

Databases� pages ���
���� Dublin� ���	�

��� A� Biliris� S� Dar� N� Gehani� H� V� Jagadish� K� Ramamritham� ASSET� A System for

Supporting Extended Transactions� In Proceedings of the ACM SIGMOD International

Conference on Management of Data � Minneapolis� Minn�� June �����

�	� P� K� Chrysantis� and Krithi Ramamritham� Synthesis of Extended Transaction Models

using ACTA� ACM Trans� on Database Systems �to appear��

��



��� P� K� Chrysanthis� ACTA� A Framework for Modeling and Reasoning about Extended Trans�

actions� Computer Science TR ������ PhD thesis� Department of Computer and Information

Science� University of Massachusetts� Amherst� Mass�� September �����

��� P� K� Chrysantis� and Krithi Ramamritham� Delegation in ACTA as a Means to Control

Sharing in Extended Transactions� IEEE Data Engineering� ������ ������ June ���	�

��� Narain Gehani� Krithi Ramamritham� Oded Shmueli� Accessing Extra Database Informa�

tion� Concurrency Control and Correctness� Computer Science TR �	����� University of

Massachussets� Amherst� ���	�

��� D� Georgakopoulos� M� Hornick� P� Krychniak� and F� Manola� Speci�cation and Manage�

ment of Extended Transactions in a Programmable Transaction Environment� In Proceedings

of 	�th International Conference on Data Engineering� Houston� Tex�� February �����

��� A� K� Elmagarmid� editor� Database Transaction Models for Advanced Applications� Morgan

Kaufman� �����

��� Jim Gray and Andreas Reuter� Transaction Processing� Concepts and Techniques� Morgan

Kaufman� ���	�

���� C� Mohan� D� Haderle� B� Lindsay� H� Pirahesh� P� Schwartz� ARIES� A Transaction

Recovery Method Supporting Fine�Granularity Locking and Partial Rollbacks Using Write�

Ahead Logging� In ACM TODS� ��������
���� �����

���� J� Eliot B� Moss� Nested Transactions� An approach to reliable distributed computing� PhD

thesis� Massachusetts Institute of Technology� Cambridge� Mass�� April �����

���� C� Pu� G� Kaiser� G�� and N� Hutchinson� Split�Transactions for Open�Ended Activities� In

Proceedings of the 	
th International Conference on VLDB� pages ��
	�� Los Angeles� CA�

Sept� �����

��	� Cris Pedregal Martin and Krithi Ramamritham� ARIES�RH� Robust Support for Delega�

tion by Rewriting History� TR ����� Computer Science Dept�� University of Massachussets�

Amherst�

���� Rothermel� K�� and C� Mohan� ARIES�NT� A Recovery Method Based on Write�Ahead

Logging for Nested Transactions� In Proceedings of the 	�th International Conference on

Very Large Databases� pages 		�
	��� Amsterdam� �����

���� H� W�achter and A� Reuter� The ConTract Model� In ����

���� Gerhard Weikum� Christof Hasse� Peter Broessler� Peter Muth� Multi�Level Recovery� In

ACM International Symposium on Principles of Database Systems� pages ���
��	� Nashville�

�����

��


