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Abstract

The notion of transaction delegation, as introduced in ACTA, has been shown
to be useful in synthesizing Extended Transaction Models. Delegation allows a
transaction to transfer responsibility over an object, and its operations, to another
transaction. Delegation can be used to broaden the visibility of the delegatee,
and to tailor the recovery properties of a transaction model. The broadening
of visibility is useful in allowing a delegator to selectively make tentative and
partial results, as well as hints such as coordination information, accessible to
other transactions. The control of the recovery makes it possible to decouple the
fate of an update from that of the transaction that made the updates; for instance,
a transaction may delegate some operations that will remain uncommitted but
valid after the delegator transaction aborted.

In this paper, we show how to implement delegation in the context of ARIES,
a robust recovery algorithm for industrial-strength transaction management sys-
tems. The resulting version of ARIES is called ARIES/RH since delegation is
tantamount to Rewriting History. The modifications to ARIES are non trivial
but small enough to efficiently support delegation. Although a naive implementa-
tion of delegation would entail frequent and costly log accesses, our careful design
has minimal cost during normal processing and involves only constant-time oper-
ations, and some stable storage access overhead, during recovery.

With our implementation of delegation, we suggest it is feasible to build efficient,
robust, industrial-quality general-purpose machinery for Extended Transaction

Models.
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1 Introduction

The transaction model adopted in traditional database systems has proven inadequate for novel
applications of growing importance, such as those that involve reactive (endless), open-ended
(long-lived), and collaborative (interactive) activities. Various FExztended Transaction Models
(ETMs) have been proposed [8], each custom built for the application it addresses; alas, no one
extension is of universal applicability.

Currently, each Extended Transaction Model is inflexible: if one’s application deviates from
the semantics foreseen by the designer of the Extended Transaction Models available, one is
forced to adapt the application to the transaction system, or to build from scratch a system
that supplies the needed functionality. To address this problem, we investigate how to create
general-purpose, industrial-quality machinery to support the specification and implementation
of diverse Extended Transaction Models. Our strategy is to work from first principles, first
identifying the basic elements that give rise to different models, then proposing mechanisms
for implementing these elements, and showing how to specify and implement various Extended
Transaction Models.

A first step was ACTA [3], that identified, in a formal framework, the essential compo-
nents of Extended Transaction Models. In more operational terms, ASSET [6] provided a set
of new language primitives that enable the implementation of various Extended Transaction
Models in an object-oriented database setting. In addition to the standard primitives Initiate
(to initialize a transaction), Begin, Abort, and Commit, ASSET provides three new primitives:
form-dependency, to establish structure-related inter-transaction dependencies, permat to allow
for data sharing without forming inter-transaction dependencies, and delegate, which allows a
transaction to transfer responsibility for an operation to another transaction.

Traditionally, the transaction invoking an operation is also responsible for committing or
aborting that operation. Delegation separates these two concerns, so that the invoker of the
operation and the transaction that commits (or aborts) the operation may be different. In
effect, to delegate is to rewrite history, because a delegation makes it appear as if the delegatee
transaction had been responsible for the delegated object all along, and the delegator had nothing
to do with it.

Delegation is useful in synthesizing Extended Transaction Models because it broadens the vis-
ibility of the delegatee, and because it controls the recovery properties of the transaction model.
The broadening of visibility is useful in allowing a delegator to selectively make tentative and
partial results, as well as hints such as coordination information, accessible to other transactions.
The control of the recovery makes it possible to decouple the fate of an update from that of the
transaction that made the updates; for instance, a transaction may delegate some operations
that will remain uncommitted but alive after the delegator transaction aborted. Examples of
Extended Transaction Models that can be synthesized using delegate are Joint Transactions,
Nested Transactions, Split Transactions, Open Nested (see [3, 6]).



Gehani et al. [6] describe how to implement some ASSET primitives. Briefly, permit is
done by suitably adding the permittee transaction to the object’s access descriptor. Form-
dependency is done by adding edges to the dependency graph, after checking for certain cycles.
Whereas the realization of permit and form-dependency are rather straight-forward, that of
delegate is not. For instance, close attention must be paid to logging and recovery issues in the
presence of delegation. To further the goal of providing general purpose machinery to support
the specification and implementation of arbitrary Extended Transaction Models, we propose
here an efficient implementation of delegation based on ARIES [10]. Our basic additions to
ARIES allow the “rewriting of history”. We hence call it ARIES/RH.

In ARIES/RH we implement delegate as described in ASSET [6], i.e., a transaction delegates
all of an object’s operations. (Implementing per-operation delegation is very similar.)

By providing delegation, we add substantial semantic power to a conventional Transaction
Management System (TMS), allowing it to model various Extended Transaction Models. How-
ever, we achieve this expressiveness with only small modifications to the original ARIES, by
carefully “piggy-backing” the delegation-related processing onto ARIES’s routine processing.
This 1s especially important during recovery, where our algorithm avoids adding costly extra
sweeps to the log.

In this paper we argue that:

o Delegation 1s a powerful, essential primitive for realizing Extended Transaction Models.
We explain its semantics and how it can be used to manipulate visibility and recovery
properties of transactions.

o It is possible to implement delegation in an industrial-strength transaction management
system. We present our algorithm in terms of extending a well-known, robust, efficient
Transaction Management System, ARIES.

e The modifications to ARIES are non trivial but small enough to efficiently support dele-
gation. The cost of delegation is minimal during normal processing. During recovery, we
incorporate our rewriting of the log to the usual work ARIES does on the log, adding only
constant-time operations, and some stable storage access overhead.

The remainder of the paper is organized as follows. In Section 2 we describe the properties
of delegation and show how it can be used to synthesize some well-known extended transaction
models. In Section 3 we explain delegation’s semantics in terms of rewriting history.

In Section 4 we develop our implementation of delegation in the context of a robust, industrial-
grade transaction management system. We discuss our modification of existing data structures
and some additions, and then describe how we operate on the log to effect delegations. In Section
5 we discuss why our algorithm correctly implements delegation and why it does it efficiently.
In Section 6 we review related work, present our conclusions and discuss future work.



2 Delegation: Concepts, Examples, and Properties

In this section we examine the properties of delegation and present some examples of extended
transaction models that can be realized using delegation.

First, some notation: ¢,t,,...,t1,ts,... denote transactions; ob, obge;, A, B, ... denote objects.
Let ob be an object being accessed by a transaction t;. When ¢; executes delegate(tq,ts, 0b), we
say that ¢; transfers its responsibility over ob to transaction 5. We say that ¢, is responsible for
ob when ¢; is in charge of changes to ob. More precisely, Responsible-trans(ob) = t; holds from
the time when ¢; either first accesses ob, creates ob, or is delegated ob until the time when either
t; terminates or delegates ob. For instance, in some implementations responsibility may imply
that ¢; holds an exclusive lock for ob. See [3] for a formal definition of delegation.

Basically, in the presence of delegation the fate of updates to an object is not necessarily
linked to the transaction who made the updates, but instead it is linked to the fate of the
transaction to which the object was last delegated. For instance, if ¢; updates ob, then delegates
ob to t,, and t; subsequently aborts, the changes ¢; made to ob will still survive if {5 commits
while it is still responsible for ob.

Via nested transactions, let us illustrate a simple use of delegation. Inheritance in nested
transactions is an instance of delegation. Delegation from a child ¢, to its parent ¢, occurs when
t. commits. This is achieved through the delegation of all the operations of ¢. to ¢, when ¢,
commits. That is, all the operations that a child transaction is responsible for are delegated to
its parent when it commits.

A transaction can delegate at any point during its execution, not just when it aborts or
commits. For instance, in Split Transactions [12], a transaction may split into two transactions,
a splitting and a split transaction, at any point during its execution. A splitting transaction %,
may delegate to the split transaction ¢, some of its operations at the time of the split. Thus, a
split transaction can affect objects in the database by committing and aborting the delegated
operations even without invoking any operation on them.

Other transaction models using delegation include Reporting Transactions and Co-Transactions
described in [4, 5]. The former periodically reports to other transactions by delegating its cur-
rent results. In the latter, control is passed from one transaction to the another transaction at
the time of the delegation.

We conclude this section with some observations. Delegate(ti,ts, 0b) is well formed when ¢,
and t, are initiated and t; is responsible for ob. Delegate(ti,t1,0b) is a null operation.

Transactions may be aborted by the system to enforce some correctness or concurrency
control criterion or due to self-aborts, requested by the transaction. It is easy to see that
delegate operates as per its definition: as pointed out before, if ¢; executed delegate(ty,t2, 0b)
and then aborted, the changes to ob are not undone, and ob’s fate is that of ¢,.

These properties extend to sets of objects by considering delegation of a set of objects as



the concurrent execution of the corresponding single-objects delegations, or an atomic sequence
of single-object delegations, in unspecified order. It is also straight-forward to extend these
properties to per-operation delegation.

3 An Operational Semantics of Delegation

We now discuss the semantics of delegation through an operational description in the context
of a Database Management System. First we present an abstract description and then we show
a more detailed, but naive, description in the context of ARIES.

3.1 Delegation as Manipulation of the Log

In a DBMS the log is the system’s history, as it contains the records of all updates, transac-
tional operations, etc. The idea of delegation is to rewrite history, selectively altering the log.
Delegate(ty,ts,0b) can be visualized as iterating through the log into the past, modifying all
records pertaining to ob, so that each record of an access to ob by ¢; will now show that the
access was done by t,.

The log 1s a list held in stable storage, whose elements are identified by monotonically
increasing values of the Log Sequence Number (LSN); via use of LSN we can view the log as an
array. During normal execution, the only valid operation is appending a log record to the end
of the log (with the corresponding increment of the current Log Sequence Number). During
recovery, the log can be rolled back and replayed, by going to the LSN of the last checkpoint
and extracting, sequentially, the records from there on. We describe delegation in Figure 1 using
the following operations:

e prevLSN(startLSN, t,) which returns the Log Sequence Number of the previous (most
recent) log record written by ¢; (i.e., before, or to the left of LSN).

e setTransID(LSN,t,), which does log|LSN|.TransID « t,, making the record appear as

if it had been written by the transaction .

Example. Consider the log fragment (see also Figure 1):

... update(t:, A), update(ts, X ), update(t,, B), update(t,, A), update(ts,Y)

After the application of delegate(t;,t2, A), we have:

... update(ts, A), update(ts, X ), update(t,, B), update(ts, A), update(ts,Y), delegate(ty,ts, A)



delegate(t,, s, 0b) is:

while currLLSN is not the initiate record for t;
if currLLSN is an update to ob
then setTransID(currLSN,¢,);
curtLSN « prevLSN(currLSN,t,)

(currLSN is initially the Log Sequence Number of delegate record)

Figure 1: semantics of delegation.

3.2 Delegation in terms of ARIES

Let us now consider delegation in terms of a specific recovery approach, namely, ARIES [10].
To facilitate recovery, ARIES keeps, for each transaction, a Backward Chain (BWC) linking the
transaction’s records in the log. That is, all the log records pertaining to one transaction form
a linked list, beginning with the most recent one. By following the BWC, ARIES’s recovery
avoids repeating undos, as it can insert compensation log records to indicate how to undo an
action or whether to skip an already undone action. Using Backward Chains, and in view of
the semantics just presented, we could realize delegate(ty,ts, 0b), , as follows:

o locate all records in ¢;’s Backward Chain that correspond to operations on ob

e move each of those records into the appropriate place in ¢’s Backward Chain, renaming

them to be #5’s records.
Since each transaction’s log records are linked in a BWC, another way to put it is:

e remove the subchain of records of operations on 0b from ¢;’s BWC;, merging it with ¢5’s

BWC,.

Example. Consider the log fragment (see also Figure 2):
... update(t:, A), update(ts, X ), update(t,, B), update(t,, A), update(ts,Y),
delegate(ty,ts, A), update(t, B), update(ts, A)
Initially the BWCs of the transactions are:
... update(t1, A)—update(t,, B)—update(t,, A)—delegate(t,,ts, A)—update(t,, B) «— BWC,
... update(ty, X )—update(ts, Y)—update(ts, A) «— BWC,
After applying the delegation, the BWCs look like this:
... update(t,, B)—delegate,(t1,ts, A)—update(t,, B) «— BWC,
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.. update(ts, A)—update(ts, X )—update(ts, A)—update(ts, Y )—update(ts, A) «— BWC,
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Figure 2: log before and after applying delegation

To implement delegation in ARIES according to the naive algorithm, although correct, is
inefficient, because the log is scanned every time a delegation is submitted. In the next section
we present an algorithm that has a very small cost during normal processing, and is efficient

during recovery.

4 Implementation: Rewriting History Efficiently

Our algorithm is lazy: it takes note of the individual delegations as they happen (when they are
submitted by transactions), but only applies them later, when the log is scanned for recovery.

It is enough to apply the delegations to the log during recovery. During normal processing,
we can rely on volatile data structures to keep track of delegations. In this section we present
our algorithm ARIES/RH and its data structures.

4.1 Data Structures

In order to defer the application of delegation to recovery time, we must keep track of which
objects have been delegated to which transactions, and how each transaction’s records are linked
together in their Backward Chain (see 3.2).

The abstract operations prevLSN and setTransID (defined in 3.1) suggest what information

we need to manipulate. For each delegated object we must keep track of its delegator transaction,
when it was delegated (see scope, below), and to whom (the delegatee). For each transaction,



we must know which objects it is responsible for (see 2). This information must be updated
according to the delegations. In the following, we present the data structures we use.

ARIES maintains a Transaction List TL that contains, for each Trans-ID, the Log Sequence
Number (i.e., the address of a log record) for the last record for that transaction. Since each

record has a PrevLSN pointer, TL(¢;) is the head of the BWCy, TL(¢;) of BWC,, and so on.

Associated with each transaction thereis an Object List OL that contains a list of the objects
that the transaction is currently responsible for (in some implementations OL may have pointers
to locks or other resource management devices). We augment the Object List with a deleg field
for each object that indicates whether this object was acquired through a delegation and from
whom. Specifically, OL,(ob).deleg = t; if ob was delegated by ¢; to ta, or OLy(ob).deleg = t, if
1t was created or accessed originally by ¢,. See Figure 3.

We create and maintain a Delegated Objects Table (DOT). For an object ob, DOT(0b)= t;
indicates that ob has been last delegated to t;. See Figure 3. Since the effects of updates on
ob are committed (respectively: discarded) when Responsible-trans(ob) commits (aborts), DOT
supplements the conventional mechanisms that track the fate of updates. DOT also keeps track
of the scope of an object’s delegation. When an object is delegated, all previous uncommitted
updates to the object are relabeled as if they had been done by the delegatee. However, if a
transaction which is responsible for 0b commits, its updates to ob cannot be delegated. Hence we
introduce the notion of scope of a delegation: it is the extent on the log to which the delegation
applies, and it is indicated by the Log Sequence Number of the last commit record that caused
the object’s updates to be committed. l.e., the scope of a delegation is the minimum LSN to
which the delegation applies.

The Delegated Objects Table is kept in volatile storage and saved to stable storage when the
system writes a checkpoint.

) delegby locks, ) delegby locks, ) delegto  scope
object ransID  etc, object ransID  etc, object ransID  LSN
A jn ¢ A ty A ty 1034
Object List 1 Object List 2 Delegated Objects Table

Figure 3: data structures after applying example delegation

Note that although DOT(o0b)= t; implies that transaction t; is responsible for ob, the reverse



does not hold, e.g. a transaction may have become responsible for an object by accessing it, so
DOT C,triet Responsible-trans.

We also introduce a new log record type: delegate. Its fields record the two transactions and
object(s) involved in the delegation. The fields are: LSN (log-sequence number), Type (delega-
tion), Trans-ID (which transaction created the record, in this case the delegator), PrevLSN (link
for the Backward Chain), Page-ID, UndoNxtLSN (for recovery backward chain), and Data (in
this type, Data contains the delegated object and delegatee Transaction ID). For other record
types, we just note here that all update and transactional event log records have Trans-ID field.
Trans-ID indicates the name of the transaction whose action the record logs. This follows the
format of log records in ARIES, see [10] for details on other record types.

4.2 Normal Processing

For normal processing ARIES/RH augments ARIES in two ways. It logs delegations as trans-
actional operations, updating the Delegated Object Table. Also, it cleans up the Delegated
Objects Table and other data structures on transaction termination. Specifically, he processing
is as follows:

delegate When a transaction ¢; executes delegate(ty, s, 0b),

1. DELEGATION WELL-FORMED? We search the Delegated Objects Table:

e If there is no entry for ob in Delegated Objects Table (the object had never been
delegated before), the delegation is OK (well-formed).

e If ob € DOT, and DOT(ob)= t; (the transaction listed in Delegated Objects Table
matches the delegating transaction), the delegation is OK.

o If ob ¢ DOT but t; # DOT(ob) (the delegating transaction does not match the
transaction listed in Delegated Objects Table), the delegation is malformed (NOK)

so we ignore it,! ending the processing of the delegation.
2. APPLY DELEGATION. If the previous step is OK,

(a) Write to the log a delegate record containing the delegating transaction id ¢;, the
delegatee’s id t2, and the object name ob. (This log record is linked into the delegating
transaction’s BWCj.)

(b) DOT(ob)« t,, i.e., update DOT to reflect the delegation (creating a new entry if ob
was not there already).

1A good implementation will issue a warning.



(c) Modify other data structures to reflect the transfer of responsibilities. I.e., transfer ob
from ¢;’s to ty’s object list OLy, OL(0b).deleg « t; (marking ob as obtained through
delegation from ¢,).

commit When a transaction commits, write a commit record to the log. Find, from the
transaction’s Object List, which objects were acquired through delegation. For each delegated
object obger, delete its entry or adjust its scope as necessary (e.g., DOT(0bge; )« null).

abort Write an abort record to the log. Discard the changes to objects owned by the aborting
transaction. Find, from the transaction’s Object List, which objects were acquired through
delegation. For each delegated object obge, delete its entry DOT(o0bge). Notice that any object
that had been delegated by the aborting transaction will no longer be in the transaction’s OL.

The other transactional events are processed as in ARIES [10].

4.3 Recovery Processing

After a crash, the transaction system must do some recovery processing to return to a state
consistent with the correctness criteria. This entails restoring the state from a checkpoint
(retrieved from stable storage), and using the log (also from stable storage) to reproduce the
events after the checkpoint was taken.

Since our recovery follows ARIES, we summarize it (from [10]) briefly here. ARIES scans the
log in one or two forward passes: analysis and redo; and then a backward pass: undo. See Figure
4. The analysis pass starts at the last checkpoint, updates the information on active transactions
and dirty pages up to the end of the log, and also determines the “loser” transactions, to be
rolled back in the undo pass. The redo pass repeats history, writing to the database those
updates that had been posted to the log but not applied before the crash. This reestablishes the
state of the database at failure time, including uncommitted updates. Finally, the undo pass
rolls back all the updates by loser transactions in reverse chronological order starting with the
last record of the log.

In some ARIES variants the analysis and redo passes can be merged in a single forward pass.
ARIES/RH uses one forward pass and one backward pass only, so it does not add any passes to
ARIES. We describe next the additions to ARIES that allow ARIES/RH to support delegation

and recovery.

4.3.1 Forward Pass

During the forward pass, ARIES/RH examines the delegate records in the log, updating Dele-
gated Objects Table accordingly. At the end of the forward pass, we know, for each delegated
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Figure 4: ARIES passes over the log

object, the relevant transactions that manipulated it; i.e., the last delegating and the last dele-

gatee transactions.

delegate Scanning the log, on finding a record of delegate(ty,ts, 0b), we do:

1. LOOKUP. We search for ob in Delegated Objects Table. If not found (the object had never

been delegated before), we create an entry for ob in Delegated Objects Table. Otherwise
we have DOT(ob)= t;.

2. RECONSTRUCT Delegated Objects Table. We set DOT(0b) « t,.

commit On encountering a commit(t) record, we scan t’s object list Object List and we
adjust scope for each delegated object in Delegated Objects Table. Notice that any subsequent
delegation of ob should not affect the log records preceding this commit. This is because a
transaction can only delegate uncommitted objects, and the same object may be used after it
has been committed by ¢. To avoid applying delegation to updates that have been committed,
we maintain and check the scope of the delegation, which is the Log Sequence Number of the
last transaction to commit this object. So adjusting scope consists of recording, on a per-object
basis, the LSN of the transaction that committed it, and it is done as part of the commit event.

On other types of records, the forward pass proceeds as in ARIES. At the end of this pass
Delegated Objects Table reflects the delegations that had taken place up to the failure.

Notice that we do not alter the log in this pass.
4.3.2 Backward Pass

In this section we discuss the delegation processing that is integrated with the undo pass of
ARIES. The only records that require extra processing are the updates; all others are processed

by unmodified ARIES.
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During the backward pass we actually apply the delegations, as follows. For each delegated
object ob, we move each of its update records, from the Backward Chain of the transaction that
was responsible for ob at the last checkpoint to the BWC of the transaction that last received
ob in delegation. Note that this entails moving some Log Sequence Number pointers in the log
records concerning ob, not the log records themselves. We also change each update log record
so that its Trans-ID field now contains the transaction id of the last delegatee transaction. For
each changed update record we write a Compensation Log Record (CLR) to prepare for crashes
during recovery.

To process update records in the backward pass we need Delegated Objects Table to list
objects with pending delegations at the point of the failure. We use DOT to check if an update
is affected by some delegation and thus needs to be modified. As pointed out above, DOT is
reconstructed in the forward pass of ARIES/RH recovery.

We also need TL to find the last record written by every transaction and initialize the BWCs.
TL is maintained by ARIES and reconstructed during the forward pass. As we process a record
for e.g. t1, we update BWC; to point to the predecessor of the record processed.

update Scanning backwards, on finding, at LSN, a record for update(t;, 0b) we do:

1. MODIFY RECORD? We search for ob in Delegated Objects Table. 1f ob € DOT, and
DOT(ob).scope < LSN (the record is within the scope of the delegation) this record must
be changed and we go to the next step. Else (ob £ DOT or LSN < DOT(ob).scope) we

are done with this record, and we exit.

2. REWRITE RECORD. We change the record’s Trans-ID to the delegatee transaction DOT(ob)
(say, t2). lLe., update(t,, ob).TransID «— DOT(ob), which turns the current record into
update(t,, ob).

3. MOVE RECORD TO NEW BWC. We move update(ts, 0b) from BWC; to BWC, (recall

DOT(ob)= t;). We write the CLR for this update to the record. Now we are done with
this record.

In general, not all the log fits into volatile memory, so the transaction system brings portions
of the log into a buffer as needed. The (contiguous) portion of the log currently in the buffer
i1s the buffer window, and it is delimited by the Log Sequence Numbers of its two ends. To
move a record from BWC; to BWC; we must change various pointers in both chains. These
pointers are the PrevLSN field part of various log records written by ¢, and ¢5. In the algorithm
presented above, we assume that all the necessary records are contained in buffer window.
Because of locality, this is a reasonable assumption, but one can envision situations, such as
multiple successive delegations, or long-lived transactions, where some of the relevant records
are in a portion of the log outside the current buffer window. Simply fetching the appropriate

11



individual records from disk is undesirable because it leads to short, scattered accesses with
high overhead. Long, contiguous accesses (like the ones that shift the window along the log) are
better because they spread out fixed access costs (such as latency) over many records.

In some cases, it is possible to bring in all the records needed by increasing the size of the
buffer, and reading in the next portion of the log, which was to be examined next anyway.
In general, the solution is to defer those pointer changes whose records are currently outside
the buffer, and apply them when their portion of the log is reached by the backward pass.
We accumulate the pointer changes in a priority queue (e.g. a heap) sorted by Log Sequence
Number. Each time the buffer window is moved, we apply all the pointer changes for the
new range of LSN s. Unfortunately, this strategy is vulnerable to crashes, which may leave
inconsistent BWCs if some pointers are changed and others are left undone in the priority
queue. We see two possible ways of addressing this. One is to log the pending changes, so
that the priority queue can be reconstructed after a crash, but we must investigate how to
avold nested recovery problems as using CLRs becomes more complex. The other solution is to
require that the chain move be atomic. We achieve this by keeping more than one contiguous
portion of the log in main memory, in effect using extra buffer windows, and only logging a CLR
after all pointer switches have been done. This second solution imposes extra disk overhead due
to non-contiguous accesses. However, since we expect that locality will generally keep related
records close together in time and in the log, either strategy should not be needed frequently
enough to have a major effect on the performance of the system.

5 Discussion

In this section we discuss two issues on the implementation. First we analyze aspects of the
algorithm presented in (Section 4) to argue that it implements delegation correctly. In the
second part, we look at the implementation from the point of view of efficiency.

5.1 ARIES/RH Implements Delegation

Here we make some observations on why our algorithm correctly implements delegation. The al-
gorithm operates correctly during normal processing, i.e., without considering failures. It is easy
to see that the supporting volatile data structures (Delegated Objects Table, per-transaction
Object List) are manipulated correctly by delegate, commit, and abort.

For the semantics in the face of crashes, we consider the forward and backward passes. The
forward pass reconstructs the supporting data structures from a checkpoint and the log, and
then it is as in normal processing. Notice that in the case of successive delegations of an object,
it 1s correct to only retain the last delegation and its scope, as we identify which update needs
to be modified (in the backward pass) based on the object not the transaction involved.

12



The backward pass applies the changes indicated by a delegation. We retain ARIES’s use
of Compensation Log Records, for the case of crashes during recovery. We extend its use to the
case of modification of the log —when we move a record from one BWC to another—, and we
ensure that such modifications are done atomically. This ensures that delegation is implemented
correctly in the face of crashes.

5.2 ARIES/RH is Efficient

We claim that ARIES/RH is efficient in the following senses. (i) When delegation is used its
overhead is proportional to how much it is used (i.e., number of delegations). No overhead is
incurred when delegation is not used, as the algorithm reduces to conventional ARIES. (ii) Dele-
gation’s overhead during normal processing is low, comparable to the overhead of e.g. posting an
update. (iii) During recovery, delegation’s overhead is generally low, as it amortizes its accesses
to the log by piggy-backing them whenever possible to the conventional ARIES log sweep. We
point out pathological recovery cases, which we expect will rarely occur; further research is need
to evaluate this. (iv) Even in the case of costs e.g. proportional to the number of delegations,
they are not significant if they entail e.g. a search on an in-memory table (such as Delegated
Objects Table) as compared to accesses to disk.

Let’s examine (i) and (ii). It is easy to see that if delegation is not used, there is no
information to upkeep. Since ARIES keeps the Backward Chain anyway, we do not need to do
extra work to keep track of where the updates done by a specific transaction are. (ii) Every time
a delegation is invoked, there are two operations to consider for cost. A lookup/update to the
transaction’s Object List (proportional to the number of objects the transaction is responsible
for), And a lookup/update on the Delegated Object Table, which can be optimized but is at
worst proportional to the number of delegations. Both OL and DOT are in main memory,
and we expect Object Lists will be short, and the Delegated Object Table will be implemented
for speed. At transaction termination we also have the added cost of removing a transaction’s
objects from Delegated Objects Table (or mark their scope); the Object List can be simply
discarded.

To see (iii), first note that during recovery, the simpler algorithm (buffering issues ignored)
presented in the first part of 4.3 is very efficient, as it visits log records when ARIES brings
them to effect the recovery. In other words, the log manipulations necessary for delegation are
applied alongside with the other tasks of ARIES: analysis, redo, and undo. More specifically,
the forward pass of recovery is only different to ARIES in its processing of commit and delegate.
For a commit record we have the additional work of recording the scope for each of the delegated
objects for which the committing transaction is responsible. This entails a lookup in Delegated
Object Table for each object in the transaction’s Object List. For a delegation we just make an
entry in the DOT to record the delegation. Most of the time both the Delegated Object Table
and the Object List are small; in general they are much smaller than the log being analyzed.
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This is important because the dominant cost during recovery is bringing the log from stable
storage; this supports (iv).

For the backward pass of recovery, we need only examine the cost for updates. For each
update, we do a lookup in Delegated Object Table, and check of scope, changes to the record
itself, changes to pointers (to move the record from one backward chain to the other), and
writing a Compensation Log Record. There are two issues to consider here. One is disk access:
in contrast with ARIES, here we must schedule not just an append, but also write (the modified
record) in the middle of the log. We expect to cluster those modifications to optimize access.

The other factor that can degrade performance severely is fragmented buffer problem, dis-
cussed at the end of 4.3.2. We expect that locality of updates by the transactions will make
this an infrequent occurrence, but studies are needed to assess the effect of fragmented-buffer,
as well as mid-log writes, on performance.

In summary: we expect that ARTES/RH will perform almost as well as ARIES during normal
processing and somewhat worse (depending on locality and certain disk access parameters)
during recovery. Although a slower recovery is undesirable, we believe it is a reasonable trade-
off in exchange for good performance during normal processing.

6 Conclusions

Delegation, by allowing changes in the visibility and recovery properties of transactions, is a very
useful primitive for synthesizing Extended Transaction Models. Our work builds on the formal
foundation provided by ACTA [3, 4, 5], and the language primitives introduced in ASSET [2],
which provides linguistic primitives to realize Extended Transaction Models.

The main contribution of this paper is ARIES/RH, an algorithm to implement delegation
in an efficient, robust, industrial-grade transaction management system. This is a crucial step
towards the flexible synthesis of Extended Transaction Models. Current work has produced
many ETMs, but each with its own tailor-made implementation; with delegation (and the other
two ASSET primitives, namely, permit and form-dependency, which are easy to implement [2])
we believe we can now offer performance comparable with ad-hoc implementations coupled with
great flexibility.

We introduced the novel concept of rewriting history, which provides the framework for an
efficient implementation, and especially, a clear recovery model for transaction delegation. By
casting delegation in terms of rewriting history, we were able to express the issues of delegation
in terms amenable to the specification of a recovery algorithm. Basing our algorithm on ARIES
allowed us to secure the benefit of ARIES’s robustness and efficiency, by modifying ARIES with
close attention to the performance and recovery issues.

Rewriting history is a natural extension of the repeating history paradigm of ARIES [10]
and is a generalization of ARIES/NT [14]. ARIES/NT is an extension to ARIES for nested
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transactions [11].

Delegation allows a transaction to manipulate a TMS data structure —the log— whose access
1s traditionally restricted or denied altogether to the application level. A good discussion of the
issues of allowing transactions access to eztra data is in [6].

Related work includes Structured Transaction Definition Language [1], a persistent program-
ming language geared to portability and the integration of legacy applications. Its emphasis,
however, 1s in Application Programming Interfaces conforming to existing conventional trans-
actional technology.

We have benefited from insights gained in an effort with goals closer to ours: the work at
GTE Labs on Transaction Specification and Management Environment [7]. The architecture
of TSME consists of a Transaction Specification Facility that understands TSME’s transac-
tion specification language, and drives the Transaction Management Mechanism which config-
ures the run-time system to support a certain Extended Transaction Model. The Transaction
Management Mechanism is programmable, but using templates to describe existing extended
transaction models, and also to drive the incorporation of only the components necessary for a
given Extended Transaction Model. It is a toolkit approach, in which certain expressions in the
specification language are mapped to certain configurations or pre-built components, and so it
approaches the problem at a coarser grain. This may allow for initial gains in performance, but
we believe that language primitives is a more flexible approach.

Also related is work in the ConTract model [15]. In ConTract, a set of steps define individual
transactions; a script is provided to control the execution of these transactions. But ConTract
scripts introduce their own control flow syntax, while we introduce a small set of transaction
management primitives that can be embedded in a host language.

In further work we will model and evaluate the performance of ARIES/RH, and study the
broader issues for providing robust, efficient, and flexible transaction processing.
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